Bio Bi2O3 (BiO)2CO3 Bi2S3 Bi2(SO4)3 BiF3 BiOI Bi4Ge3O12 Bi2Te3 BiSrCuOx BiSrCaCuOx  

Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                        XPS Database of Polymers                     → Six (6) BE Tables



Bismuth (Bi)

 

Pucherite – Bi(VO4) Bismuth – Bio Tellurobismuthite – Bi2Te3

 

  Page Index
  • Expert Knowledge & Explanations


Bismuth (Bio) Metal

Peak-fits, BEs, FWHMs, and Peak Labels


   
Bismuth (Bio) Metal
Bi (4f) Spectrum – raw spectrum
Bismuth (Bio) Metal
Peak-fit of Bi (4f) Spectrum (w/o asymm)

 Periodic Table – HomePage  
Bismuth (Bio) Metal
Bi (4f) Spectrum, 
extended range 
Bismuth (Bio) Metal
Peak-fit of Bi (4f) Spectrum (w asymm)
 

 

Survey Spectrum of Bismuth (Bio) Metal

with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Bismuth (Bio) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
  Bi (4s) 938 1.96 15.0
  Bi (4p1/2) 806 2.10 19.8
F (1s) overlaps Bi 4p3/2) 678 6.48 19.8
  Bi (4d3/2) 464 9.14 24.0
In (3d) overlaps Bi (4d5/2) 440 13.44 24.0
S (2p) overlaps Bi (4f5/2) 162.18 10.93 28.7
Si (2s) overlaps Bi (4f7/2) 156.91 13.90 28.7
  Bi (5s) 160 0.563 28.7
  Bi (5p1/2) 119 0.546 29.8
Mg (2s) overlaps Bi (5p3/2) 93 1.41 29.8

σ:  abbreviation for the term Scofield Photoionization Cross-Section used with IMFP and Transmission Function to generate RSFs and atom% quantitation

Plasmon Peaks

Energy Loss Peaks

Auger Peaks


Energy Loss    Intrinsic Plasmon Peak:  ~xx eV above peak max

Expected Bandgap for Bi2O3: xx eV
Work Function for Bi:  xx eV

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 


 

Valence Band Spectrum from Bio Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

 


 

Plasmon Peaks from Bio Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Bi (4f) – Extended Range Spectrum Bi (4f) – Extended Range Spectrum – Vertically Zoomed
 Periodic Table 

 

Bi (MNN) Auger Peaks from Bio Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Bio Metal – main Auger peak Bio Metal – full Auger range
   

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Artefacts Caused by Argon Ion Etching

C (1s) from Bismuth Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Bio

can form when Argon Ions are used
to removed surface contamination

   

 

Side-by-Side Comparison of

Bi Native Oxide & Bismuth Oxide (Bi2O3)
Peak-fits, BEs, FWHMs, and Peak Labels

Bi Native Oxide Bi2O3
Bi (4f) from Bi Native Oxide
Flood Gun OFF
As-Measured, C (1s) at 285.5 eV 
Bi (4f) from Bi2O3 – pressed pellet
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 

 Periodic Table 

 
Bi Native Oxide Bi2O3
C (1s) from Bi Native Oxide
Flood Gun OFF
As-Measured, C (1s) at 285.5 eV

C (1s) from Bi2O3 – pressed pellet
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 Periodic Table 

 
Bi Native Oxide Bi2O3
O (1s) from Bi Native Oxide
Flood Gun OFF
As-Measured, C (1s) at 285.5 eV

O (1s) from Bi2O3 – pressed pellet
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 

 Periodic Table

 


.
Bi Native Oxide Bi2O3
Bi (MNN) Auger Peaks from Bi Native Oxide
on Bismuth
As-Measured, C (1s) at 285.5 eV (Flood Gun OFF)

Bi (MNN) Auger Peaks from Bi2O3 – pressed pellet
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

na


 

 

Survey Spectrum of Bismuth Native Oxide 

with Peaks Integrated, Assigned and Labelled

 

 Periodic Table 


 

 

Survey Spectrum of Bismuth Oxide (Bi2O3)

with Peaks Integrated, Assigned and Labelled

 

 Periodic Table  


 

Overlays of Bi (4f) Spectra for
Bio metal, Bi Native Oxide and Bi2O3

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 Overlay of Bio metal and Bi Native Oxide – Bi (4f)
Native Oxide C (1s) = 285.5 eV
Flood gun OFF

 Overlay of Bio metal and Bi2O3 – Bi (4f)
Pure Oxide C (1s) = 285.0 eV
Chemical Shift: 2.1 eV
 Periodic Table  Copyright ©:  The XPS Library 

 

Overlay of Bi (4f )
Bio Metal, Bi Native Oxide, & Bi2O3

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
Bio, Bi2O3 

Bio
Ion etched clean
Bi2O3 – pressed pellet
Flood gun is ON,  Charge referenced so C (1s) = 285.0 eV


Overlay of Valence Band Spectra
for Bio metal and Bi2O3

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Bismuth Minerals, Gemstones, and Chemical Compounds

 

 Koechlinite – Bi2MoO6 Bismutite – (BiO)2CO3 Wulytine – Bi4(SiO4)3 Bismuthinite – Bi2S3

 Periodic Table 



 

 

Six (6) Chemical State Tables of Bi (4f7/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Bi (4f7/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Bi 83 Bi – element 157.0 eV   285.0 eV The XPS Library
Bi 83 Bi2Se3 (N*2) 157.9 eV 158.2 eV 284.8 eV Avg BE – NIST
Bi 83 Bi-2S3 (N*3) 158.2 eV 159.5 eV 284.8 eV Avg BE – NIST
Bi 83 BiSrCaCuOx (N*3) 158.3 eV 158.4 eV 284.8 eV Avg BE – NIST
Bi 83 BiSrCaCuOx 158.5 eV   285.0 eV The XPS Library
Bi 83 BiSrCuOx 158.5 eV   285.0 eV The XPS Library
Bi 83 Bi2O3 (N*5) 158.6 eV 159.8  eV 284.8 eV Avg BE – NIST
Bi 83 Bi-2O3 158.9 eV   285.0 eV The XPS Library
Bi 83 (BiO)2CO3 159.1 eV   285.0 eV The XPS Library
Bi 83 Bi-I3 (N*1) 159.3 eV   284.8 eV Avg BE – NIST
Bi 83 Bi-F3 159.7 eV   285.0 eV The XPS Library
Bi 83 Bi-F3 (N*1) 160.8 eV   284.8 eV Avg BE – NIST
Bi 83 Bi-(OH)3     285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Bi (4f7/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Bi (4f7/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Bi (4f7/2)
Bi metal 157
Bi2O3 159

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Bi (4f7/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Bi (4f7/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Bi 4f7/2 Bi 156.9 ±0.1 156.8 157.0
Bi 4f7/2 Bi2MoO6 158.3 ±0.3 158.0 158.5
Bi 4f7/2 Bi2S3 159.0 ±0.3 158.7 159.2
Bi 4f7/2 NaBiO3 159.1 ±0.3 158.8 159.3
Bi 4f7/2 BiI3 159.3 ±0.3 159.0 159.5
Bi 4f7/2 Bi2O3 159.5 ±0.3 159.2 159.8
Bi 4f7/2 (BiO)2Cr2O7 159.7 ±0.3 159.4 159.9
Bi 4f7/2 Bi2Ti2O7 159.8 ±0.3 159.5 160.0
Bi 4f7/2 BiOCl 160.0 ±0.3 159.7 160.3
Bi 4f7/2 BiF3 160.8 ±0.3 160.5 161.1
Bi 4f7/2 Bi2(SO4)3・H2O 161.1 ±0.2 160.9 161.3

 

 Periodic Table 



 


Histograms of NIST BEs for Bi (4f
7/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  156.9 eV for Bio based on 9 literature BEs Histogram indicates:  159.5 eV for Bi2O3 based on 6 literature BEs

 
 

Table #6


NIST Database of Bi (4f7/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Bi 4f7/2 Bi 156.60  Click
Bi 4f7/2 Bi 156.85  Click
Bi 4f7/2 Bi 156.88  Click
Bi 4f7/2 Bi 156.90  Click
Bi 4f7/2 Bi 156.90  Click
Bi 4f7/2 Bi 156.90  Click
Bi 4f7/2 Bi 156.93  Click
Bi 4f7/2 Bi 157.00  Click
Bi 4f7/2 Bi 157.00  Click
Bi 4f7/2 O2/Bi 157.00  Click
Bi 4f7/2 O2/Bi 157.00  Click
Bi 4f7/2 Bi 157.10  Click
Bi 4f7/2 Bi/Pt 157.10  Click
Bi 4f7/2 Bi2Te3 157.10  Click
Bi 4f7/2 Bi 157.12  Click
Bi 4f7/2 Bi2Te3 157.20  Click
Bi 4f7/2 Bi1.99Sr2.00Ca2Cu3Ox 157.80  Click
Bi 4f7/2 Bi2.00Sr2.00Ca2Cu3Ox 157.80  Click
Bi 4f7/2 Bi2.01Sr2.00Ca2Cu3Ox 157.80  Click
Bi 4f7/2 Bi2.01Sr2.00Ca2Cu3Ox 157.80  Click
Bi 4f7/2 Bi2.01Sr2Ca2Cu3Ox 157.80  Click
Bi 4f7/2 Bi2Se3 157.90  Click
Bi 4f7/2 Ba0.6K0.4BiO3 157.90  Click
Bi 4f7/2 Bi1.6Pb0.4Sr2Ca2Cu3Ox 157.90  Click
Bi 4f7/2 Bi2.39Ru1.61O7-x 158.00  Click
Bi 4f7/2 Bi2Sr1.4CaCu2Ox 158.10  Click
Bi 4f7/2 As40Bi10Se50 158.10  Click
Bi 4f7/2 As40Bi4Se56 158.10  Click
Bi 4f7/2 Bi2.86Ru1.14O7-x 158.10  Click
Bi 4f7/2 Bi2S3 158.20  Click
Bi 4f7/2 Bi10.3Ge23.9Se65.8 158.20  Click
Bi 4f7/2 Bi15.6Ge20.1Se64.3 158.20  Click
Bi 4f7/2 Bi2Ca1+xSr2-xCu2O8+y 158.20  Click
Bi 4f7/2 Bi2Se3 158.20  Click
Bi 4f7/2 Bi2Sr2CaCu2O8 158.20  Click
Bi 4f7/2 Bi2Sr2CaCu2O8 158.20  Click
Bi 4f7/2 Co/Bi2Sr2CaCu2O8 158.20  Click
Bi 4f7/2 Bi2MoO6 158.30  Click
Bi 4f7/2 Bi1.1Ge28.0Se70.9 158.30  Click
Bi 4f7/2 Bi2Sr2Ca2Cu3Ox/MgO 158.30  Click
Bi 4f7/2 Bi2Sr2CaCu2O8 158.30  Click
Bi 4f7/2 Bi2Sr2Ca2Cu2O8+x 158.30  Click
Bi 4f7/2 Bi2Sr2CaCu2O8+x 158.30  Click
Bi 4f7/2 Bi2CaSr2Cu2Ox 158.40  Click
Bi 4f7/2 Bi2CaSr2Ni0.2Cu1.8Ox 158.40  Click
Bi 4f7/2 Bi6.5Ge25.2Se68.3 158.40  Click
Bi 4f7/2 Pb/Bi2Sr2CaCu2O8 158.40  Click
Bi 4f7/2 Bi4Ge20Se76 158.40  Click
Bi 4f7/2 Bi2Sr2Ca0.8Y0.2Cu2O8+x 158.40  Click
Bi 4f7/2 Bi2Sr2CaCu2O8+x 158.50  Click
Bi 4f7/2 Bi2Sr2CuO6 158.50  Click
Bi 4f7/2 Bi2Sr2CaCu2O8 158.50  Click
Bi 4f7/2 Bi2Sr2CaCu2O8+x 158.50  Click
Bi 4f7/2 Bi1.99Sr2.00Ca2Cu3Ox 158.50  Click
Bi 4f7/2 Bi2.00Sr2.00Ca2Cu3Ox 158.50  Click
Bi 4f7/2 Bi2.01Sr2.00Ca2Cu3Ox 158.50  Click
Bi 4f7/2 Bi2.01Sr2.00Ca2Cu3Ox 158.50  Click
Bi 4f7/2 Bi2.01Sr2Ca2Cu3Ox 158.50  Click
Bi 4f7/2 Bi1.6Pb0.4Sr2CaCu2O8+x 158.50  Click
Bi 4f7/2 (BiS)1.09NbS2 158.50  Click
Bi 4f7/2 Bi2.2CaCu2Sr2Pb0.2Ox 158.50  Click
Bi 4f7/2 Bi2.3CaCu2Sr2Pb0.1Ox 158.50  Click
Bi 4f7/2 Bi2O3 158.60  Click
Bi 4f7/2 BiPbRu2O6.5 158.60  Click
Bi 4f7/2 Bi2Ru2O7 158.60  Click
Bi 4f7/2 Bi1.7Pb0.4Sr2Ca2Cu3O10+x 158.60  Click
Bi 4f7/2 Bi1.55Pb0.6Sr2Ca2Cu3.5O10+x 158.60  Click
Bi 4f7/2 BiPbSr2CaCu2O8+x 158.60  Click
Bi 4f7/2 Bi2Sr2CaCu2Ox 158.60  Click
Bi 4f7/2 Bi2O3 158.70  Click
Bi 4f7/2 Bi2O3 158.70  Click
Bi 4f7/2 Bi2O3 158.70  Click
Bi 4f7/2 Bi2S3 158.70  Click
Bi 4f7/2 (Bi2O3)0.200(LiBO2)0.800 158.70  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.59(Bi2O3)0.01 158.70  Click
Bi 4f7/2 Bi2O3 158.80  Click
Bi 4f7/2 Bi/Bi2Sr2CaCu2O8 158.80  Click
Bi 4f7/2 NaBa3BiO6 158.80  Click
Bi 4f7/2 O2/Bi 158.80  Click
Bi 4f7/2 O2/Bi 158.80  Click
Bi 4f7/2 (Bi2O3)0.150(LiBO2)0.850 158.80  Click
Bi 4f7/2 Bi2S3 158.90  Click
Bi 4f7/2 (Bi2O3)0.100(LiBO2)0.900 158.90  Click
Bi 4f7/2 (Bi2O3)0.050(LiBO2)0.950 158.90  Click
Bi 4f7/2 (Bi2O3)0.025(LiBO2)0.975 158.90  Click
Bi 4f7/2 BiO4V 159.00  Click
Bi 4f7/2 Bi10Ge20Se70 159.00  Click
Bi 4f7/2 Bi2Sr2Ca0.8Y0.2Cu2O8+x 159.00  Click
Bi 4f7/2 Li6KBiO6 159.00  Click
Bi 4f7/2 (Bi2O3)0.004(LiBO2)0.996 159.00  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.54(Bi2O3)0.06 159.00  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.40(Bi2O3)0.10 159.00  Click
Bi 4f7/2 NaBiO3 159.10  Click
Bi 4f7/2 Bi1.65Pb0.35Sr2Ca2Cu3O10 159.10  Click
Bi 4f7/2 (Bi2O3)0.250(LiBO2)0.750 159.10  Click
Bi 4f7/2 (Bi2O3)0.015(LiBO2)0.985 159.10  Click
Bi 4f7/2 (Bi2O3)0.005(LiBO2)0.995 159.10  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.40(Bi2O3)0.20 159.10  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.594(Bi2O3)0.006 159.10  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.30(Bi2O3)0.20 159.10  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.42(Bi2O3)0.08 159.10  Click
Bi 4f7/2 BiSbO4 159.20  Click
Bi 4f7/2 Bi2Sr1.4CaCu2Ox 159.20  Click
Bi 4f7/2 (Bi2O3)0.020(LiBO2)0.980 159.20  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.50(Bi2O3)0.10 159.20  Click
Bi 4f7/2 Bi4Ge3O12 159.20  Click
Bi 4f7/2 BiI3 159.30  Click
Bi 4f7/2 Bi2O3 159.30  Click
Bi 4f7/2 Bi2.39Ru1.61O7-x 159.30  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.598(Bi2O3)0.002 159.30  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.596(Bi2O3)0.004 159.30  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.498(Bi2O3)0.002 159.30  Click
Bi 4f7/2 Bi12GeO20 159.30  Click
Bi 4f7/2 Bi2Ge3O9 159.40  Click
Bi 4f7/2 (Bi2O3)0.002(LiBO2)0.998 159.40  Click
Bi 4f7/2 (Bi2O3)0.003(LiBO2)0.997 159.40  Click
Bi 4f7/2 (Li2O)0.4(B2O3)0.592(Bi2O3)0.008 159.40  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.47(Bi2O3)0.03 159.40  Click
Bi 4f7/2 Bi2(MoO4)3 159.50  Click
Bi 4f7/2 Bi2S3 159.50  Click
Bi 4f7/2 Bi2.86Ru1.14O7-x 159.50  Click
Bi 4f7/2 Bi2MoO6 159.50  Click
Bi 4f7/2 (Bi2O3)0.010(LiBO2)0.990 159.50  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.497(Bi2O3)0.003 159.50  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.49(Bi2O3)0.01 159.50  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.48(Bi2O3)0.02 159.50  Click
Bi 4f7/2 Bi2MoO6 159.60  Click
Bi 4f7/2 Bi2Cr2O9 159.60  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.494(Bi2O3)0.006 159.60  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.492(Bi2O3)0.008 159.60  Click
Bi 4f7/2 Bi2(MoO4)3 159.70  Click
Bi 4f7/2 Ti2Bi2O7 159.70  Click
Bi 4f7/2 Bi2O3 159.80  Click
Bi 4f7/2 Bi2Mo2O9 159.80  Click
Bi 4f7/2 (Li2O)0.5(B2O3)0.496(Bi2O3)0.004 159.80  Click
Bi 4f7/2 BiOCl 159.90  Click
Bi 4f7/2 BiF3 160.80  Click
Bi 4f7/2 Bi2(SO4)3.H2O 161.20  Click
Bi 4f7/2 Bi2O3 161.50  Click

 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies
on Bismuth Materials

 

 


 

Expert Knowledge Explanations

 Periodic Table 


 

Bismuth Chemical Compounds

 

Peak-fits and Overlays of Chemical State Spectra

Pure Bismuth, Bio:  Bi (4f)
Cu (2p3/2) BE = 932.6 eV
Bi2O3:  Bi (4f)
C (1s) BE = 285.0 eV
BiF3:  Bi (4f)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Bi (4f) Spectra shown Above

C (1s) BE = 285.0 eV

 

Chemical Shift between Bi and Bi2O3:  2.1 eV
 Chemical Shift between Bi and BiF3:  2.8 eV

 

 Periodic Table 


 

Bismuth Oxide (Bi2O3)
pressed pellet

Survey Spectrum from Bi2O3
Flood gun is ON, C (1s) BE = 285.0 eV
Bi (4f) Chemical State Spectrum from Bi2O3
Flood gun is ON, C (1s) BE = 285.0 eV

   .
O (1s) Chemical State Spectrum from Bi2O3
Flood gun is ON, C (1s) BE = 285.0 eV
C (1s) Chemical State Spectrum from Bi2O3
Flood gun is ON, C (1s) BE = 285.0 eV

 
Valence Band Spectrum from Bi2O3
Flood gun is ON, C (1s) BE = 285.0 eV

Auger Signals from Bi2O3
Flood gun is ON, C (1s) BE = 285.0 eV

na


 

 

Bismuth Chemical Compounds

 

Bismuth Fluoride, BiF3

Survey Spectrum Bi (4f) Spectrum


  .
F (1s) Spectrum C (1s) Spectrum


  .
Valence Band Spectrum  
 

 Periodic Table 



 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of Bismuth – Bi2O3

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

 Periodic Table 


 

 

Flood Gun Effect on Native Oxide of Bismuth

 

Native Oxide of Bismuth Sheet – Sample GROUNDED

 


 

Native Oxide of Bismuth Sheet – Sample Grounded

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Bi (4f) O (1s) C (1s)
     
 Periodic Table     

 


XPS Study of UHV Gas Captured by Freshly Ion Etched Bismuth
 
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Bio

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
 
 
 
Bi (4f) Signal
 O (1s) Signal C (1s) Signal
     
 
 
Copyright ©:  The XPS Library

 

 

 

Bismuth Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 


XPS Facts, Guidance & Information

 Periodic Table 

    Element   Bismuth (Bi)
 
    Primary XPS peak used for Peak-fitting:   Bi (4f7/2)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for “f” orbital, ΔBE = 5.4 eV
 
    Binding Energy (BE) of Primary XPS Signal:   156.9 eV
 
    Scofield Cross-Section (σ) Value:   Bi (4f7/2) = 13.90.      Bi (4f5/2) = 10.93
 
    Conductivity:   Bi resistivity =  
Native Oxide suffers Differential Charing
 
    Range of Bi (4f7/2) Chemical State BEs:   156 – 163 eV range   (Bio to BiF3)  
    Signals from other elements that overlap
Bi (4f7/2) Primary Peak:
  S (2p)  
    Bulk Plasmons:   ~xx eV above peak max for pure  
    Shake-up Peaks:   xx  
    Multiplet Splitting Peaks:   xx  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Bi (4f7/2)

  • FWHM (eV) of Bi (4f7/2) for Pure Bio ~0.62 eV using 25 eV Pass Energy after ion etching:
  • FWHM (eV) of Bi (4f7/2) for Bi2O3 1.4 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  157 eV for Bi (4f7/2) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Bi (4f7/2):  S (2p)

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.90 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
    • Ag (3d5/2) FWHM (eV) = ~0.85 eV for PE 50 on SSI S-Probe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.
  • Constraints used on Peak-fitting: typically constrain the peak area ratios based on the Scofield cross-section values
  • Asymmetry for Conductive materials:  20-30% with increased Lorentzian %
  • Peak-fitting “2s” or “3s” Peaks:  Often need to use 50-60% Lorentzian peak-shape

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Bismuth

  • Bismuth develops a thick native oxide due to the reactive nature of clean Bismuth.
  • The native oxide of Bi Ox is 2-9 nm thick.
  • Bismuth thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Bismuth forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal Bi (4f) peak.
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Bismuth (Bi)

  • Conductivity:  Bismuth readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Bi (4f7/2) at 157 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (4f7/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  150 – 180 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  120 – 220 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching Bi and various reactive surfaces.  Carbides form due to the presence of residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature
 
 
from Thermo website
 



End of File