Bo B2O3 BN LiB3O5 Li2B4O7 SrB4O7 NaBF4 LiBF4 NH4BF4  B4C B6Si WB BK-7

Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, overlays of key spectra, BE tables, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table                       XPS Database of Polymers                 → Six (6) BE Tables


 

Boron (B)

 

Sassolite – H3BO3 Boron – Bo Boron Oxide – B2O3 – Crystallites

 

  Page Index
  • Expert Knowledge & Explanations


Boron (Bo) Metalloid
Peak-fits, BEs, FWHMs, and Peak Labels

Boron (Bo) metalloid 
B (1s) Spectrum – raw
Boron (Bo) metalloid
Peak-fit of B (1s) Spectrum


Survey Spectrum of Boron (Bo)
with Peaks Integrated, Assigned and Labelled


 

Plasmon / Energy Loss Peaks from Pure Boron (Bo)
 Fresh exposed bulk produced by extensive Ar+ ion etching

B (1s) – Extended Range Spectrum B (1s) – Extended Range Spectrum – Vertically Zoomed

Features Observed

 Periodic Table



Valence Band Spectra of Boron

Bo, B2O3

Bo metalloid
Ion etched clean – Ar (3p) at 9 eV
B2O3 crystallite
Charge Referenced so C (1s) = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 

XPS Signals for Boron, Bo metalloid

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
P (2p), Si (2s) & Zr (3d) overlaps B (1s) ~188 0.486 30.3

σ:  abbreviation for the term Scofield Photoionization Cross-Section which are used with IMFP and TF to generate RSFs and atom% quantitation

Loss Peak:  ~24 eV above peak max
Expected Bandgap for B2O3: ~3 eV 

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 

 

Side-by-Side Comparison of

Boron Native Oxide & Boron Oxide, B2O3
Peak-fits, BEs, FWHMs, and Peak Labels

Native Oxide Pure Boron Oxide, B2O3
B (1s) from Native Oxide
Charge Referenced to C (1s) at 285.0 eV
(BE difference between native oxide and B2O3 is 1.5 eV – ignoring Carbon)
B (1s) from B2O3 crystallite – exposed bulk
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV



C (1s) from Boron Native Oxide
Charge Referenced to C (1s) at 285.0 eV
(BE of C (1s) deviates by 1.5 eV from expected value)


C (1s) from B2O3 crystallite – exposed bulk
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV



O
(1s) from Boron Native Oxide
Flood Gun ON

Charge Referenced to C (1s) at 285.0 eV


O (1s) from B2O3 crystallite – exposed bulk
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


Copyright ©:  The XPS Library 

 


 

Overlays of B (1s) Spectra for

Boron (B), Native Boron Oxide and Boron Oxide, B2O3

Caution: BEs from Grounded Native Oxides can be Misleading when Flood Gun is ON

Overlay of Pure Bo Metalloid and Native Oxide – B (1s) BE
Native Oxide C (1s) = 285.0 eV  (FG ON)
Chemical Shift: ~1 eV
 Overlay of Pure Bo Metalloid and Pure Boron Oxide – B (1s) BE
Pure Oxide C (1s) = 285.0 eV
Chemical Shift: 5.7
Copyright ©:  The XPS Library 

 

Overlay of Pure Boron (Bo) Metalloid
Native Boron Oxide & Pure Boron Oxide – B (1s) BE

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Boron Minerals, Gemstones, and Chemical Compounds

 

Boron Oxide – B2O3 (anhydrous) Ulexite – NaCaB5O6(OH)6·5H2O Colemanite – Ca2B6O11·5H2O Kernite – Na2B4O6(OH)2·3H2O

 



 

Six (6) Chemical State Tables of B (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

→  Periodic Table 


Table #1

B (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

 

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
B 5 B4C (N*2) 186.5 eV 186.9 eV 284.8 eV Avg BE – NIST
B 5 B – element 187.9 eV The XPS Library
B 5 TIB2 (N*1) 187.5 eV 284.8 eV Avg BE – NIST
B 5 CrB2 187.9 eV 285.0 eV The XPS Library
B 5 W2B5 (N*1) 187.9 eV 284.8 eV Avg BE – NIST
B 5 CrB2 (N*1) 188.0 eV 284.8 eV Avg BE – NIST
B 5 MoB2 188.0 eV 285.0 eV The XPS Library
B 5 LaB6 188.1 eV 285.0 eV The XPS Library
B 5 WB 188.1 eV 188.5 eV 285.0 eV The XPS Library
B 5 Ni3B 188.2 eV 285.0 eV The XPS Library
B 5 Fe2B (N*2) 188.3 eV 188.4 eV 284.8 eV Avg BE – NIST
B 5 MoB2 (N*1) 188.4 eV 284.8 eV Avg BE – NIST
B 5 B-N (N*10) 190.0 eV 192.2 eV 284.8 eV Avg BE – NIST
B 5 B-N 190.8 eV 285.0 eV The XPS Library
B 5 B-2O3 (N*5) 192.0 eV 193.6 eV 284.8 eV Avg BE – NIST
B 5 B-2O3 192.6 eV 193.7 eV 285.0 eV The XPS Library
B 5 B-(OH)3 (N*4) 193.0 eV 193.6 eV 284.8 eV Avg BE – NIST
B 5 NaBF4 (N*3) 194.9 eV 195.8 eV 284.8 eV Avg BE – NIST
B 5 NaBF4 196.0 eV 285.0 eV The XPS Library

 

Notes on Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale Calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

B (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

B (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy, B (1s)
B elemental 187.2 eV
ZrB2 187.8 eV
B sub-oxide 188.6 eV
Li2B4O7 192.5 eV

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

B (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

B (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
B 1s NaBH4 187.2 ±0.3 186.9 187.4
B 1s B10H14 187.6 ±0.3 187.3 187.8
B 1s Boride 188.2 ±1.0 187.2 189.2
B 1s B 189.6 ±0.5 189.1 190.0
B 1s BN 190.1 ±0.3 189.8 190.4
B 1s Na2B4O7・10H2O 192.6 ±0.4 192.2 193.0
B 1s B2O3 192.8 ±0.7 192.1 193.5
B 1s H3BO3 193.2 ±0.4 192.8 193.5
B 1s NaBF4 195.1 ±0.3 194.8 195.3

 Periodic Table 



 

Histograms of NIST BEs for B (1s) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  187.3 eV for Bo based on 5 literature BEs Histogram indicates:  192.9 eV for B2O3 based on 5 literature BEs

Histogram indicates:  190.9 eV for BN based on 10 literature BEs

 



Table #6

NIST Database of B (1s) Binding Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
B 1s [(C10H24N4)Cu](BH4)2 186.30  Click
B 1s B 186.40  Click
B 1s B 186.50  Click
B 1s B4C 186.50  Click
B 1s [n-C4H9)4N]3[Cu(B11H11)2] 186.50  Click
B 1s Na[B(C6H5)4] 186.70  Click
B 1s [(C14H32N4)Cu](BH4)2 186.80  Click
B 1s B4C 186.90  Click
B 1s MnB2 187.20  Click
B 1s [N(CH3)4][B3H8] 187.20  Click
B 1s NaBH4 187.20  Click
B 1s B 187.30  Click
B 1s Rb(B(C6H5)4) 187.30  Click
B 1s K2[BH3(CO2)] 187.30  Click
B 1s B20Fe80 187.30  Click
B 1s Ni3B 187.40  Click
B 1s Cs2[B10H10] 187.40  Click
B 1s Cs[Co(B9C2H11)2] 187.40  Click
B 1s B20Fe80 187.40  Click
B 1s B6O 187.41  Click
B 1s TiB2 187.50  Click
B 1s Na[B(C6H5)4] 187.50  Click
B 1s [NH4][B(C6H5)4] 187.50  Click
B 1s B6Cr14Fe32Ni36P12Ox 187.50  Click
B 1s [N(C2H5)4]2[Pt(B10H12)2] 187.60  Click
B 1s Mo2B5 187.70  Click
B 1s KB(C6H5)4 187.70  Click
B 1s B20Fe80 187.70  Click
B 1s B20Fe80 187.70  Click
B 1s B10H14 187.80  Click
B 1s B 187.80  Click
B 1s B/Rh 187.80  Click
B 1s W2B5 187.90  Click
B 1s FeB 187.90  Click
B 1s FeB 187.90  Click
B 1s B/TaB1.94/Ta 187.90  Click
B 1s O2/B/TaB1.94/Ta 187.90  Click
B 1s O2/B/TaB1.94/Ta 187.90  Click
B 1s CrB2 188.00  Click
B 1s BxO (1<x<6) 188.00  Click
B 1s B4Cr15Ni81 188.00  Click
B 1s B4Cr15Ni81 188.00  Click
B 1s B4Cr15Ni81Ox 188.00  Click
B 1s B4Cr15Ni81 188.00  Click
B 1s CoB 188.10  Click
B 1s CsB(C6H5)4 188.10  Click
B 1s B26Ni74O13.5 188.10  Click
B 1s B12Ni88O19.5 188.10  Click
B 1s B18Ni82O15.4 188.10  Click
B 1s B19Ni81O10.6 188.10  Click
B 1s [B9C2H11].C5H5N 188.20  Click
B 1s HfB2 188.30  Click
B 1s VB2 188.30  Click
B 1s Fe2B 188.30  Click
B 1s B4Si 188.30  Click
B 1s B 188.40  Click
B 1s MoB2 188.40  Click
B 1s Fe2B 188.40  Click
B 1s [PtB10H12(P(C6H5)3)2] 188.50  Click
B 1s AlB2 188.50  Click
B 1s [Ni(B9C2H11)2] 188.50  Click
B 1s [Ni(B9C2H11)2] 188.50  Click
B 1s Cs[Ni(B9C2H11)2] 188.50  Click
B 1s NaBH4 188.50  Click
B 1s SiC/B 188.60  Click
B 1s Cs[Fe(B9C2H11)2] 188.70  Click
B 1s SiC/B 188.80  Click
B 1s SiC/B 188.80  Click
B 1s [Pt(B10H12)(P(C2H5)3)2] 188.90  Click
B 1s NiB 188.90  Click
B 1s TaB2/Ta 188.90  Click
B 1s Co2B 189.10  Click
B 1s B6O 189.19  Click
B 1s BNxO(1-x) (x=.17)/SiC 189.40  Click
B 1s BNxO(1-x) (x=.06)/SiC 189.50  Click
B 1s BN/Pt 189.70  Click
B 1s Ni2B 189.90  Click
B 1s BN 190.00  Click
B 1s BN 190.40  Click
B 1s BN 190.50  Click
B 1s BN 190.50  Click
B 1s TcCl[(C4H7N2O)2(C4H6N2O)(C4H9BO3)] 190.50  Click
B 1s BN/Pd 190.50  Click
B 1s B44.6N37.9O17.5 190.50  Click
B 1s BN 190.60  Click
B 1s BN 190.60  Click
B 1s B42.6N32.6O24.6 190.60  Click
B 1s B22.4Si16.7O24.1N36.5 190.60  Click
B 1s BN 190.70  Click
B 1s BN 190.70  Click
B 1s BN 190.70  Click
B 1s TcBr[(C4H7N2O)2(C4H6N2O)(C4H9BO3)] 190.70  Click
B 1s B22.5Si18.2O18.5N40.5 190.70  Click
B 1s B17.8Si17.0O47.5N19.1 190.70  Click
B 1s B35.0N14.8O50.0 190.80  Click
B 1s B35.7N10.1O53.9 190.80  Click
B 1s BNxO(1-x) (x=.06)/SiC 190.90  Click
B 1s BNxO(1-x) (x=.17)/SiC 190.90  Click
B 1s TcCl[(C6H9N2O)2(C6H8N2O)(CH3BO3)] 190.90  Click
B 1s B19.7Si15.2O57.2N7.8 190.90  Click
B 1s BN 191.00  Click
B 1s BN 191.20  Click
B 1s B15.2Si17.9O64.0N3.0 191.20  Click
B 1s B2S3 191.30  Click
B 1s BN/Ni 191.30  Click
B 1s (Bi2O3)0.200(LiBO2)0.800 191.30  Click
B 1s O2/B/Rh 191.50  Click
B 1s (Bi2O3)0.150(LiBO2)0.850 191.50  Click
B 1s C20H36B2FeN6O8 191.60  Click
B 1s (Bi2O3)0.050(LiBO2)0.950 191.60  Click
B 1s (Li2O)0.4(B2O3)0.54(Bi2O3)0.06 191.60  Click
B 1s FC6H4B(OH)2 191.70  Click
B 1s ClC6H4B(OH)2 191.70  Click
B 1s (Li2O)0.4(B2O3)0.40(Bi2O3)0.20 191.70  Click
B 1s (Li2O)0.5(B2O3)0.42(Bi2O3)0.08 191.70  Click
B 1s Na2B4O7 191.80  Click
B 1s B4Cr15Ni81Ox 191.80  Click
B 1s LiBO2 191.80  Click
B 1s LiBO2 191.80  Click
B 1s LiBO2 191.80  Click
B 1s LiBO2 191.80  Click
B 1s (Bi2O3)0.250(LiBO2)0.750 191.80  Click
B 1s (Bi2O3)0.100(LiBO2)0.900 191.80  Click
B 1s (Li2O)0.5(B2O3)0.5 191.80  Click
B 1s (F2)0.15((Li2O)0.50(B2O3)0.50)0.85 191.90  Click
B 1s Y0.85Ca0.15SrBaCu2.5B0.5Ox 191.90  Click
B 1s Y0.85Ca0.15Sr0.5Ba1.5Cu2.5B0.5Ox 191.90  Click
B 1s (Li2O)0.4(B2O3)0.592(Bi2O3)0.008 191.90  Click
B 1s (Li2O)0.4(B2O3)0.6 191.90  Click
B 1s (Li2O)0.40(B2O3)0.60 191.90  Click
B 1s B2O3 192.00  Click
B 1s Na3B3O6 192.00  Click
B 1s HS(CH2)11B(OH)2/Au 192.00  Click
B 1s HS(CH2)11B(OH)2/Au 192.00  Click
B 1s YSrBaCu2.5B0.5Ox 192.00  Click
B 1s YSrBaCu2.5B0.5Ox 192.00  Click
B 1s (Li2O)0.50(B2O3)0.50 192.00  Click
B 1s FeBO3 192.00  Click
B 1s Na2B4O7 192.00  Click
B 1s (Li2O)0.4(B2O3)0.50(Bi2O3)0.10 192.00  Click
B 1s (Li2O)0.4(B2O3)0.59(Bi2O3)0.01 192.00  Click
B 1s (Li2O)0.5(B2O3)0.40(Bi2O3)0.10 192.00  Click
B 1s Na[BH(CH3O)3] 192.10  Click
B 1s BN 192.10  Click
B 1s BNxO(1-x) (x=.06)/SiC 192.10  Click
B 1s (ZnO)50(B2O3)50 192.10  Click
B 1s (Li2O)0.4(B2O3)0.598(Bi2O3)0.002 192.10  Click
B 1s (Ag2O)0.30(B2O3)0.49(TeO2)0.21 192.10  Click
B 1s (PbF2)0.70(B2O3)0.30 192.10  Click
B 1s (Bi2O3)0.025(LiBO2)0.975 192.10  Click
B 1s (Bi2O3)0.020(LiBO2)0.980 192.10  Click
B 1s (Bi2O3)0.003(LiBO2)0.997 192.10  Click
B 1s (Bi2O3)0.005(LiBO2)0.995 192.10  Click
B 1s (F2)0.10((Li2O)0.50(B2O3)0.50)0.90 192.10  Click
B 1s (Li2O)0.4(B2O3)0.596(Bi2O3)0.004 192.10  Click
B 1s (Li2O)0.5(B2O3)0.498(Bi2O3)0.002 192.10  Click
B 1s (Li2O)0.5(B2O3)0.494(Bi2O3)0.006 192.10  Click
B 1s (Li2O)0.5(B2O3)0.49(Bi2O3)0.01 192.10  Click
B 1s (Li2O)0.5(B2O3)0.48(Bi2O3)0.02 192.10  Click
B 1s (F2)0.05((Li2O)0.40(B2O3)0.60)0.95 192.15  Click
B 1s BN 192.20  Click
B 1s BNxO(1-x) (x=.17)/SiC 192.20  Click
B 1s LiB3O5 192.20  Click
B 1s (Ag2O)0.30(B2O3)0.56(TeO2)0.14 192.20  Click
B 1s (Ag2O)0.30(B2O3)0.42(TeO2)0.28 192.20  Click
B 1s (Ag2O)0.30(B2O3)0.28(TeO2)0.42 192.20  Click
B 1s (PbF2)0.60(B2O3)0.40 192.20  Click
B 1s (Bi2O3)0.015(LiBO2)0.985 192.20  Click
B 1s (Bi2O3)0.004(LiBO2)0.996 192.20  Click
B 1s (F2)0.20((Li2O)0.30(B2O3)0.70)0.80 192.20  Click
B 1s (F2)0.20((Li2O)0.50(B2O3)0.50)0.80 192.20  Click
B 1s (Li2O)0.5(B2O3)0.497(Bi2O3)0.003 192.20  Click
B 1s (Li2O)0.5(B2O3)0.47(Bi2O3)0.03 192.20  Click
B 1s (Li2O)0.5(B2O3)0.30(Bi2O3)0.20 192.20  Click
B 1s (F2)0.05((Li2O)0.50(B2O3)0.50)0.95 192.20  Click
B 1s (F2)0.30((Li2O)0.30(B2O3)0.70)0.70 192.25  Click
B 1s (Li2O)0.30(B2O3)0.70 192.25  Click
B 1s (Ag2O)0.30(B2O3)0.14(TeO2)0.56 192.30  Click
B 1s (Bi2O3)0.001(LiBO2)0.999 192.30  Click
B 1s (Bi2O3)0.002(LiBO2)0.998 192.30  Click
B 1s (F2)0.10((Li2O)0.30(B2O3)0.70)0.90 192.30  Click
B 1s (Li2O)0.4(B2O3)0.594(Bi2O3)0.006 192.30  Click
B 1s (Li2O)0.5(B2O3)0.499(Bi2O3)0.001 192.30  Click
B 1s (Li2O)0.5(B2O3)0.496(Bi2O3)0.004 192.30  Click
B 1s (F2)0.25((Li2O)0.30(B2O3)0.70)0.75 192.35  Click
B 1s (F2)0.15((Li2O)0.40(B2O3)0.60)0.85 192.35  Click
B 1s B2O3 192.40  Click
B 1s B26Ni74O13.5 192.40  Click
B 1s B12Ni88O19.5 192.40  Click
B 1s B18Ni82O15.4 192.40  Click
B 1s B19Ni81O10.6 192.40  Click
B 1s (Bi2O3)0.010(LiBO2)0.990 192.40  Click
B 1s (Ag2O)0.30(B2O3)0.70 192.40  Click
B 1s (PbF2)0.50(B2O3)0.50 192.40  Click
B 1s (NaPO3)0.33(Na2B4O7)0.67 192.40  Click
B 1s (F2)0.05((Li2O)0.30(B2O3)0.70)0.95 192.40  Click
B 1s (Li2O)0.5(B2O3)0.492(Bi2O3)0.008 192.40  Click
B 1s (F2)0.10((Li2O)0.40(B2O3)0.60)0.90 192.41  Click
B 1s (PbF2)0.40(B2O3)0.60 192.50  Click
B 1s (NaPO3)0.50(Na2B4O7)0.50 192.50  Click
B 1s (NaPO3)0.67(Na2B4O7)0.33 192.50  Click
B 1s (NaPO3)0.95(Na2B4O7)0.05 192.50  Click
B 1s (F2)0.20((Li2O)0.40(B2O3)0.60)0.80 192.50  Click
B 1s (Na2O)0.25(B2O3)0.75 192.50  Click
B 1s [BCl3(PO(C6H5)3)] 192.60  Click
B 1s Na2B4O7.10H2O 192.60  Click
B 1s (PbF2)0.25(B2O3)0.75 192.60  Click
B 1s (NaPO3)0.75(Na2B4O7)0.25 192.60  Click
B 1s (F2)0.15((Li2O)0.30(B2O3)0.70)0.85 192.60  Click
B 1s B35.0N14.8O50.0 192.60  Click
B 1s B35.7N10.1O53.9 192.60  Click
B 1s (F2)0.25((Li2O)0.40(B2O3)0.60)0.75 192.65  Click
B 1s [BCl3(P(C6H5)3)] 192.70  Click
B 1s (Al2O3)9(B2O3)2 192.70  Click
B 1s B/Al2O3 192.70  Click
B 1s (Na2O)0.15(B2O3)0.85 192.70  Click
B 1s B44.6N37.9O17.5 192.70  Click
B 1s B22.5Si18.2O18.5N40.5 192.70  Click
B 1s (NaPO3)0.83(Na2B4O7)0.17 192.70  Click
B 1s (NaPO3)0.90(Na2B4O7)0.10 192.70  Click
B 1s B42.6N32.6O24.6 192.70  Click
B 1s CrBO3 192.72  Click
B 1s CrBO3 192.72  Click
B 1s H3BO3 192.80  Click
B 1s (NH4)2B4O7.4H2O 192.80  Click
B 1s B33.8N6.6O59.5 192.80  Click
B 1s B17.8Si17.0O47.5N19.1 192.80  Click
B 1s B22.4Si16.7O24.1N36.5 192.90  Click
B 1s H3BO3 193.00  Click
B 1s H3BO3 193.00  Click
B 1s B2O3 193.10  Click
B 1s B15.2Si17.9O64.0N3.0 193.10  Click
B 1s B19.7Si15.2O57.2N7.8 193.20  Click
B 1s B2O3 193.30  Click
B 1s [(P(C6H5)3)].BF3 193.30  Click
B 1s O2/B/TaB1.94/Ta 193.30  Click
B 1s ThPdAl 193.40  Click
B 1s H3BO3 193.40  Click
B 1s O2/B/TaB1.94/Ta 193.40  Click
B 1s (B2O3)25(Zn(PO3)2)75 193.40  Click
B 1s [BBr3(As(C6H5)3)] 193.46  Click
B 1s (B2O3)30(Zn(PO3)2)70 193.50  Click
B 1s (B2O3)15(Zn(PO3)2)85 193.50  Click
B 1s BPO4 193.50  Click
B 1s B15.9Si19.0O65.1 193.50  Click
B 1s B2O3 193.60  Click
B 1s [N(CH3)3].BF3 193.60  Click
B 1s H3BO3 193.60  Click
B 1s B19.2Si15.3O65.4 193.60  Click
B 1s ThPdAl 193.70  Click
B 1s B2O3 193.70  Click
B 1s B2O3 193.70  Click
B 1s B2O3 193.70  Click
B 1s [BF3(PO(C6H5)3)] 193.80  Click
B 1s (-(C34H20N4O)(BF4).mH2O)-)n 193.80  Click
B 1s ThPdAl 193.90  Click
B 1s Na2B4O7 194.00  Click
B 1s (CH3C5H3NCH3).BF3 194.10  Click
B 1s C5H5N.BF3 194.30  Click
B 1s (C2H5NH2).BF3 194.60  Click
B 1s NaBF4 194.90  Click
B 1s NaBF4 194.90  Click
B 1s (NH3).BF3 194.90  Click
B 1s NH4BF4 194.90  Click
B 1s [NF4][BF4] 195.20  Click
B 1s CH3CN.BF3 195.50  Click
B 1s KBF4 195.60  Click
B 1s NaBF4 195.80  Click

 

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 



 

 

Advanced XPS Information Section

Spectra, BEs, Features, Guidance and Cautions
for XPS Research Studies on Boron Materials

 

 


 

 

XPS Spectra 

 

 

Chemical State Spectra from Common Boron Compounds

                             

Pure Boron – metalloid:  B (1s) B2O3 Oxide:  B (1s)
C (1s) BE = 285.0
NaBF4:   B (1s)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of B (1s) Spectra shown Above

C (1s) BE = 285.0 eV

 Periodic Table 


 

Plasmon/Energy Loss Peaks from Boron (Bo)
 Fresh exposed bulk produced by extensive Ar+ ion etching

B (1s) – Extended Range Spectrum B (1s) Extended Range Spectrum – Vertically Zoomed

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Boron (Bo) Native Oxide
Naturally Formed at 25 Co 1 atm (age:  many months in lab air)

Survey Spectrum from Native Oxide on Bo metalloid B (1s) Chemical State Spectrum from Native Oxide on Bmetalloid


   .
O (1s) Chemical State Spectrum from Native Oxide on Bo metalloid C (1s) Chemical State Spectrum from Native Oxide on Bo metalloid

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Boron Oxide (B2O3)
anhydrous crystallites – bulk freshly exposed 

Survey Spectrum from B2O3 B (1s) Chemical State Spectrum from B2O3

 


 

   .
O (1s) Chemical State Spectrum from B2O3 C (1s) Chemical State Spectrum from B2O3

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra of Boron
Bo, B2O3

Bo metalloid, Ion etched clean
Peak at 9 eV is Ar (3p)
B2O3 crystallite
Charge Referenced so C (1s) = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Flood Gun Effect on Native Oxide of Boron

 

Native Oxide of Boron Piece – Sample Floating

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

B (1s) O (1s) C (1s)
All Peaks Shift Linearly
NO Differential Charging
All Peaks Shift Linearly
NO Differential Charging
All Peaks Shift Linearly
NO Differential Charging

 Periodic Table 

 

Chemical State Spectra from Alloys
that include Boron

 

 

Boron Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 


XPS Facts, Guidance & Information

 Periodic Table 

    Element Boron (B)
 
    Primary XPS peak used for Peak-fitting : B (1s)  
    Spin-Orbit (S-O) splitting for Primary Peak: NO Spin-Orbit splitting for “s” orbitals
 
    Binding Energy (BE) of Primary XPS Signal: 188.0 eV
 
    Scofield Cross-Section (σ) Value: B (1s) = 0.486
 
    Conductivity: Poor    ~106 Ω⋅m (at 20 °C)
 
    Range of B (1s) Chemical State BEs: 188-196 eV range   (Bo to NaBF4)  
Signals from other elements that overlap
B (1s) Primary Peak:
  P (2s)
Energy Loss Peaks:   ~25 eV above peak max for pure element
Shake-up Peaks: not possible
Multiplet Splitting Peaks:   not possible

 

 

General Information about
Boron Compounds:
  xx  
Cautions – Chemical Poison Warning

xx

Copyright ©:  The XPS Library 



 

Information Useful for Peak-fitting B (1s)

  • FWHM (eV) of B (1s) for ion etched Pure Boron:  ~1.92 eV for B (1s) using 50 eV Pass Energy after ion etching:
  • FWHM (eV) of B (1s) for B2O3 ~1.86 eV for B (1s) using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  188.0 eV for B (1s) with +/- 0.1 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for B (1s):  P (2s)

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Metal Oxide:  Pure element FWHM << Metal Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a metal or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 Periodic Table 


 

Contaminants Specific to Boron – metalloid

  • Boron – metalloid develops a thin native oxide due to the low reactive nature of clean Boron – metalloid.
  • The native oxide of BOx is 1-3 nm thick.
  • Boron – metalloid thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Boron forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many metals that readily oxidize in the air.
  • High levels of carbonate appear on reactive metal oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive metals.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal B (1s) peak
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Boron (B)

  • Conductivity:  Boron readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  B (1s) at 188.0 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  180 – 200 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  170 – 220 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments
  •  

 Periodic Table 


 

Effects of Argon Ion Etching

  • Produces peak broadening for pure Boron
  • Carbides can appear after ion etching various reactive metals.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


Gas Phase XPS or UPS Spectra


 




End of File