Ceo CeO2 Ce2O3 Ce2(CO3)3 Ce2(SO4)3 CeF3 CeF4 (NH4)4Ce(SO4)4   Basic

XPS Spectra
Cerium (Ce) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.

Cerium Dioxide  (CeO2)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from CeO2
Freshly exposed bulk, Flood gun is ON, Ag (3d5/2) FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
Ce (3d) Spectrum from CeO2 Raw
Fresh exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV,
Ag FWHM = 0.75 eV
Ce (3d) Spectrum from CeO2 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV


 Periodic Table   → Six (6) BE Tables
Ce (3d) Spectrum from CeO2 Extended
Fresh exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Ce (3d) Spectrum from CeO2 – Expanded
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
O (1s) Spectrum from CeO2 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
O (1s) Spectrum from CeO2  Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
 


 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from CeO2 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
C (1s) Spectrum from CeO2  Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
 

   
 Periodic Table  → Six (6) BE Tables
Ce (4p-4s) Spectrum from CeO2 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Ce (4p-4s) Spectrum from CeO2  Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
na 



 Periodic Table  → Six (6) BE Tables
Ce (4d) Spectrum from CeO2 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Ce (4d) Spectrum from CeO2 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
 

 Periodic Table  → Six (6) BE Tables
Ce (MNN) Auger Signals from CeO2 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 1.0 eV
Valence Band Spectrum from CeO2 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 1.0 eV

Overlays
 Periodic Table  → Six (6) BE Tables
Valence Band Spectra from CeO2 & Ce2(CO3)3
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 1.0 eV
Ce (3d) Spectra from CeO2 & Ce2(CO3)3
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 1.0 eV


 Periodic Table  → Six (6) BE Tables
Valence Band Spectra from CeO2 & Ce2(SO4)3  
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 1.0 eV
Ce (3d) Spectra from CeO2 & Ce2(SO4)3
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 1.0 eV


End of Spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)



Transmission Function Tests


December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Cu), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Cu), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of Ion Etched Copper (Cu), PEs = 100, 120, 140, 160, 180 and 200 eV
 


End-of-Transmission-Function-Tests



 

 

Six (6) Chemical State Tables of Ce (3d5/2) BEs

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Ce (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Ce 58 Ce – element 883.6 eV   285.0 eV The XPS Library
Ce 58 Ce-2O3     285.0 eV The XPS Library
Ce 58 Ce2-CO3 882.4 eV   285.0 eV The XPS Library
Ce 58 Ce-O2 881.9 eV   285.0 eV The XPS Library
Ce 58 Ce -F4     285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (3d7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Ce (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Ce (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Ce (3d5/2)
Ce (IV) oxide ~882 eV
Ce (III) oxide ~880 eV

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Ce (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

BE tables from Rare Earths are not available

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Ce (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Ce 3d5/2 CeO2 882.2 ±0.4 881.8 882.5
Ce 3d5/2 CeAl2 883.5 ±0.3 883.2 883.8
Ce 3d5/2 CeCu2Si2 883.7 ±0.3 883.4 883.9
Ce 3d5/2 Ce 884.0 ±0.3 883.7 884.2
Ce 3d5/2 CePd3 884.3 ±0.3 884.0 884.6
Ce 3d5/2 CeSe 884.3 ±0.3 884.0 884.6
Ce 3d5/2 CeH3 886.1 ±0.3 885.8 886.3

 Periodic Table 



 


Histograms of NIST BEs for Ce (3d5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  883.7 eV for Ceo based on 3 literature BEs  

 

Table #6


NIST Database of Ce (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
Ce 3d5/2 Ce2O3 880.70  Click
Ce 3d5/2 CeO2/(CeOx+Y2O3+ZrO2) 881.10  Click
Ce 3d5/2 CeNbS3 881.30  Click
Ce 3d5/2 Ce2(MoO4)3 881.70  Click
Ce 3d5/2 CeO2 881.80  Click
Ce 3d5/2 CeO2 881.93  Click
Ce 3d5/2 (Ce0.9Tb0.1)PO4 882.00  Click
Ce 3d5/2 (Ce0.9Tb0.1)PO4 882.10  Click
Ce 3d5/2 CeO2 882.20  Click
Ce 3d5/2 Pt/CeO2+TiO2 (80-20) 882.20  Click
Ce 3d5/2 Ce2Mo4O15 882.28  Click
Ce 3d5/2 CeO2 882.30  Click
Ce 3d5/2 CeO2 882.40  Click
Ce 3d5/2 CeO2/(CeOx+Y2O3+ZrO2) 882.40  Click
Ce 3d5/2 CeO2/(CeOx+Y2O3+ZrO2) 882.40  Click
Ce 3d5/2 Ce2(MoO4)3O 882.44  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 882.50  Click
Ce 3d5/2 Ce8Mo12O49 882.55  Click
Ce 3d5/2 CeO2+TiO2 (80-20) 882.60  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 882.60  Click
Ce 3d5/2 CeO2 882.70  Click
Ce 3d5/2 Pt/CeO2+TiO2 (80-20) 882.80  Click
Ce 3d5/2 Pt/CeO2+TiO2 (80-20) 882.90  Click
Ce 3d5/2 Ce 883.20  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 883.20  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 883.40  Click
Ce 3d5/2 CeAl2 883.50  Click
Ce 3d5/2 CeO2+TiO2 (20-80) 883.50  Click
Ce 3d5/2 CeCu2Si2 883.60  Click
Ce 3d5/2 Ce 883.90  Click
Ce 3d5/2 Ce 883.90  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 884.00  Click
Ce 3d5/2 CePd3 884.30  Click
Ce 3d5/2 CeSe 884.30  Click
Ce 3d5/2 (Ce0.9Tb0.1)PO4 885.30  Click
Ce 3d5/2 (Ce0.9Tb0.1)PO4 885.30  Click
Ce 3d5/2 CeNbS3 885.30  Click
Ce 3d5/2 CePO4 885.40  Click
Ce 3d5/2 (Ce0.9Tb0.1)PO4 885.50  Click
Ce 3d5/2 Ce2O3/(CeOx+Y2O3+ZrO2) 885.50  Click
Ce 3d5/2 Ce2O3/(CeOx+Y2O3+ZrO2) 885.50  Click
Ce 3d5/2 (Ce0.9Tb0.1)PO4 885.60  Click
Ce 3d5/2 Ce2O3/(CeOx+Y2O3+ZrO2) 885.60  Click
Ce 3d5/2 Ce2(CO3)3.8H2O 885.70  Click
Ce 3d5/2 CeH2 885.80  Click
Ce 3d5/2 Ce2O3 885.80  Click
Ce 3d5/2 CeH3 886.00  Click
Ce 3d5/2 CeH3 886.00  Click
Ce 3d5/2 Pt/CeO2+TiO2 (80-20) 886.00  Click
Ce 3d5/2 Pt/CeO2+TiO2 (80-20) 886.30  Click
Ce 3d5/2 CeO2+TiO2 (80-20) 886.40  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 886.40  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 886.50  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 886.50  Click
Ce 3d5/2 Pt/CeO2+TiO2 (20-80) 886.50  Click
Ce 3d5/2 CeO2+TiO2 (20-80) 886.70  Click
Ce 3d5/2 Pt/CeO2+TiO2 (80-20) 886.90  Click
Ce 3d5/2 CeNbS3 887.80  Click
Ce 3d5/2 CeO2/(CeOx+Y2O3+ZrO2) 888.40  Click
Ce 3d5/2 CeO2 888.60  Click
Ce 3d5/2 Ce2O3/(CeOx+Y2O3+ZrO2) 888.90  Click
Ce 3d5/2 CeO2 898.30  Click
Ce 3d5/2 CeO/(CeOx+Y2O3+ZrO2) 898.40  Click
Ce 3d5/2 CeO/(CeOx+Y2O3+ZrO2) 898.40  Click
Ce 3d5/2 CeO/(CeOx+Y2O3+ZrO2) 898.50  Click


Statistical Analysis of Binding Energies in NIST XPS Database of BEs