CaCl2 CsCl CuCl CuCl2 KCl LiCl NaCl NH4Cl PtCl4  
PVC -(C2Cl)- 2-Chloro-styrene                

Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                        XPS Database of Polymers                  → Six (6) BE Tables 



Chlorine (Cl)

 

Chloroargyrite – AgCl Chlorine – Cl (gas), a solid at -150 C
Fiedlerite – Pb3FCl4(OH) · H2O

 

  Page Index
  • Peak-fits and Overlays of  Cl Chemical Compounds
  • Expert Knowledge & Explanations


Cl(-) in Lithium Chloride (LiCl)
(freshly exposed bulk of bead)
Peak-fits, BEs, FWHMs, and Peak Labels



Lithium Chloride, LiCl
Cl (2p) Spectrum – raw 

as received crystal surface,
charge referenced so C (1s) = 285.0 eV

Lithium Chloride, LiCl
Cl (2p) Spectrum – peak-fit
as received crystal surface,
charge referenced so C (1s) = 285.0 eV



  .
Lithium Chloride, LiCl
Cl (2s) spectrum – raw

as received crystal surface
charge referenced so C (1s) = 285.0 eV
Lithium Chloride, LiCl
Cl (2s) spectrum – peak-fit

as received crystal surface
charge referenced so C (1s) = 285.0 eV

  .
Lithium Chloride, LiCl
Valence Band spectrum

as received crystal surface
charge referenced so C (1s) = 285.0 eV

Lithium Chloride, LiCl
C (1s) spectrum

as received crystal surface
charge referenced so C (1s) = 285.0 eV


  .
Lithium Chloride, LiCl
Li (1s) spectrum

as received crystal surface
charge referenced so C (1s) = 285.0 eV
 
 

 

Survey Spectrum of Lithium Chloride (LiCl)
with Peaks Integrated, Assigned and Labelled


 Periodic Table 

XPS Signals for Chlorine, Cl

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
  Cl (2s) 269.98 1.69 27.9
  Cl (2p3/2) 200.66 0.775 29.2
Se (Auger) overlaps Cl (2p3/2) 199.01 1.51 29.2
  Cl (3s) 16.49 0.1852 32.5
  Cl (3p3/2) 5.3 0.1433  

σ:  abbreviation for the term Scofield Photoionization Cross-Section which is used with IMFP and TF to produce RSFs and atom% quantitation

Energy Loss Peak:  ~  eV above peak max
Expected Bandgap for LiCl:  6.0 – 6.4 eV  (https://materialsproject.org/)
Expected Bandgap for NaCl:  4.5 – 5.0 eV

*Scofield Cross-Section (σ) for C (1s) = 1.0

 


 

Energy Loss Peaks from Cl (2p) in KCl
freshly cleaved crystal

Cl (2p) – Extended Range Spectrum Cl (2p) – Extended Range Spectrum – Vertically Zoomed

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Side-by-Side Comparison of

Cl (2p) Spectra in:   LiCl, NaCl, KCl, NH4Cl
Peak-fits, BEs, FWHMs, and Peak Labels

  .
LiCl
Cl (2p) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
NaCl
Cl (2p) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

.
KCl
Cl (2p) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

NH4Cl
Cl (2p) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


.
CuCl2
Cl (2p) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

Overlay of Cl (2p)
from LiCl, NaCl, KCl, and NH4Cl
C (1s) BE = 285.0 eV


 


Survey Spectrum of Sodium Chloride, NaCl
with Peaks Integrated, Assigned and Labelled

 


 

 

Survey Spectrum of Potassium Chloride, KCl
with Peaks Integrated, Assigned and Labelled

 


 

 

Survey Spectrum of Ammonium Chloride, NH4Cl
with Peaks Integrated, Assigned and Labelled

 

 




Chlorine (Cl)
in an Organic Polymer

Peak-fits, BEs, FWHMs, and Peak Labels



Poly-Vinyl Chloride (PVC)

cast from solution in THF
analyzed bottom side of film that touched glass
Poly-Vinyl Chloride, (-CH2-CH-Cl-)n
Cl (2p) Spectrum – raw

film formed from solution in THF
charge referenced so C (1s) = 285.0 eV
Poly-Vinyl Chloride, (-CH2-CH-Cl-)n
Cl (2p) Spectrum – peak-fit

film formed from solution in THF
charge referenced so C (1s) = 285.0 eV

.
Poly-Vinyl Chloride, (-CH2-CH-Cl-)n
C (1s) Spectrum – raw 

film formed from solution in THF
charge referenced so C (1s) = 285.0 eV
Poly-Vinyl Chloride, (-CH2-CH-Cl-)n
C (1s) Spectrum – peak-fit

film formed from solution in THF
charge referenced so C (1s) = 285.0 eV

.
Poly-Vinyl Chloride, (-CH2-CH-Cl-)n
Valence Band Spectrum 

Freshly formed film from solution
charge referenced so C (1s) = 285.0 eV
Poly-Vinyl Chloride, (-CH2-CH-Cl-)n
Cl (2s) Spectrum – peak-fit

film formed from solution in THF
charge referenced so C (1s) = 285.0 eV
   

 

 

Survey Spectrum of Poly-Vinyl Chloride (PVC)
with Peaks Integrated, Assigned, and Labelled

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Chloride Minerals, Crystals, and Chemical Compounds

 

Pyromorphite – Pb5(PO4)3Cl Salammoniac – NH4Cl Hephaistosite – TlPb2Cl5 Halite – NaCl

 



 

 

Six (6) Chemical State Tables of Cl (2p3/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

 Periodic Table 


Table #1

Cl (2p3/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or
NIST Average BE
Largest BE Hydrocarbon C (1s) BE  Source
Cl 17 Cl-NH4 198.1 eV   285.0 eV The XPS Library
Cl 17 Cl-K 198.5 eV   285.0 eV The XPS Library
Cl 17 Cu-Cl2 198.9 eV   284.8 eV Avg BE – NIST
Cl 17 Cl-Li 199.0 eV   285.0 eV The XPS Library
Cl 17 Cl-Na 199.3 eV   285.0 eV The XPS Library
Cl 17 Pt-Cl2 199.6 eV   285.0 eV The XPS Library
Cl 17 Cl-C polymer 200.4 eV 200.8 eV 285.0 eV The XPS Library
Cl 17 KClO3 (N*3) 205.9 eV 206.7 eV 284.8 eV Avg BE – NIST
Cl 17 KClO4 (N*2) 208.3 eV 208.7 eV 284.8 eV Avg BE – NIST

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpsLibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Cl (2p3/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Cl (2p3/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy, Cl (2p3/2) / eV
Organic Cl 200
Metal 198.5-200

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Cl (2p3/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Cl (2p3/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Cl 2p3/2 K2IrCl6 198.4 ±0.4 198.0 198.8
Cl 2p3/2 Pt(NH3)2Cl2 198.5 ±0.4 198.1 198.9
Cl 2p3/2 PdCl2 198.6 ±0.4 198.2 198.9
Cl 2p3/2 Alkali Chloride 198.7 ±0.6 198.1 199.2
Cl 2p3/2 NiCl2 199.4 ±0.4 199.0 199.7
Cl 2p3/2 CuCl2 199.7 ±0.4 199.3 200.0
Cl 2p3/2 p(CH2=CHCl) 200.0 ±0.3 199.7 200.3
Cl 2p3/2 C6H5Cl 200.5 ±0.5 200.0 201.0
Cl 2p3/2 KClO3 206.7 ±0.4 206.3 207.0
Cl 2p3/2 NaClO4 208.5 ±0.3 208.2 208.8
Cl 2p3/2 Perchlorate 208.7 ±0.5 208.2 209.2

 

 Periodic Table 



 


Histograms of NIST BEs for Cl (2p3/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  196.4 eV for Cl- in NaCl based on 8 literature BEs Histogram indicates:  195.0 eV for Cl- in KCl based on 7 literature BEs

Table #6


NIST Database of Cl (2p3/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Cl 2p3/2 [Tc((C6H5)2PCH2CH2P(C6H5)2)2Cl2]Cl 196.20  Click
Cl 2p3/2 [P(C6H5)4]Cl 196.40  Click
Cl 2p3/2 [P(C6H5)4]Cl 196.40  Click
Cl 2p3/2 [(CH3)4N]Cl 196.50  Click
Cl 2p3/2 [TeCl(CH2P(C6H5)3)3]Cl3 196.60  Click
Cl 2p3/2 [Te(CH2P(C6H5)3)4]Cl4 196.60  Click
Cl 2p3/2 [((C6H5)3P=CH2)3TeCl]Cl3 196.60  Click
Cl 2p3/2 [((C6H5)3P=CH2)4Te]Cl4 196.60  Click
Cl 2p3/2 [Tc((CH3)2PCH2CH2P(CH3)2)2Cl2]Cl 196.60  Click
Cl 2p3/2 (-CH2CH(C6H4CH2N(CH3)3(Cl))-)n 196.65  Click
Cl 2p3/2 [TeCl2(CH2P(C6H5)3)2]Cl2 196.70  Click
Cl 2p3/2 [((C6H5)3P=CH2)2TeCl2]Cl2 196.70  Click
Cl 2p3/2 [Ru2Cl3(P(C2H5)2-C6H5)6]Cl 196.80  Click
Cl 2p3/2 (-C6H4NHClC6H4NHC6H4NHClC6H4NH-)n 196.90  Click
Cl 2p3/2 [(Pt(P(C6H5)3)2S)2PtCl2] 197.00  Click
Cl 2p3/2 (-(CH(C(O)NH2)CH2)k-(CH(C(O)NH(CH2)3N(CH3)3Cl)CH2)m-)n 197.20  Click
Cl 2p3/2 [MoCl(CO)2(C3H5)(NC5H4C5H4N)] 197.30  Click
Cl 2p3/2 [ReCl(N2)((C6H5)2PCH2CH2P(C6H5)2)2] 197.30  Click
Cl 2p3/2 [Co2Cl2(CH3C(NOH)C(CH3)NCH2CH2NHCH2CH2NHCH2CH2NC(CH3)C(NOH)CH3)]Cl2 197.30  Click
Cl 2p3/2 [AuCl(CH2P(C6H5)3)2] 197.30  Click
Cl 2p3/2 [(C6H5)3PCH2]2AuCl 197.30  Click
Cl 2p3/2 [WCl(CO)2(C3H5)(NC5H4C5H4N)] 197.40  Click
Cl 2p3/2 [Mo2Cl4(C4H4N2)2] 197.50  Click
Cl 2p3/2 [WCl(CO)2(CH3C3H4)(C5H4N)2] 197.50  Click
Cl 2p3/2 [CoCl2(CH3C(NOH)C(CH3)NCH2CH2NC(CH3)C(NOH)CH3)] 197.50  Click
Cl 2p3/2 [(C6H5)3PCH2]-[(C6H5)3P]AuCl 197.50  Click
Cl 2p3/2 HCl/O2/Pb 197.50  Click
Cl 2p3/2 [Tl2Cl6((C2H5)2PC6H5)5] 197.60  Click
Cl 2p3/2 [(N(C2H5)4)W(CO)5]Cl 197.60  Click
Cl 2p3/2 [Pd2(SO2)Cl2((C6H5)2PCH2P(C6H5)2)2] 197.60  Click
Cl 2p3/2 [N(C2H5)4][Cr(CO)5Cl] 197.60  Click
Cl 2p3/2 [TeCl(CH2P(C6H5)3)3]Cl3 197.60  Click
Cl 2p3/2 [(C6H5)3PCH2]2CuCl 197.60  Click
Cl 2p3/2 [((C6H5)3P=CH2)3TeCl]Cl3 197.60  Click
Cl 2p3/2 TcCl[(C4H7N2O)2(C4H6N2O)(C4H9BO3)] 197.60  Click
Cl 2p3/2 TcCl[(C6H9N2O)2(C6H8N2O)(CH3BO3)] 197.60  Click
Cl 2p3/2 W2(mu-H)(mu-Cl)Cl4(C5H5N)4 197.60  Click
Cl 2p3/2 [(C6H5)3P]2AuCl 197.60  Click
Cl 2p3/2 RuCl3 197.60  Click
Cl 2p3/2 [Pt2(P(C6H5)3)4SSCH2Cl]Cl 197.60  Click
Cl 2p3/2 UCl4 197.70  Click
Cl 2p3/2 UCl5 197.70  Click
Cl 2p3/2 AgCl 197.70  Click
Cl 2p3/2 [N(C4H9)4]3[Mo2Cl9] 197.70  Click
Cl 2p3/2 [Mo6Cl8Cl4(SO(CH3)2)2] 197.70  Click
Cl 2p3/2 [MoCl(CO)2((C6H5)2PCH2CH2P(C6H5)2)(C3H5)] 197.70  Click
Cl 2p3/2 [RuCl3(NO2C6H4NN)(P(C6H5)3)2] 197.70  Click
Cl 2p3/2 [RuCl3(P(C6H5)3)2(CH3C6H4NN)] 197.70  Click
Cl 2p3/2 [RuCl3(CH3C6H4NNH)(P(C6H5)3)2] 197.70  Click
Cl 2p3/2 (-CH2CH(CH2NH3Cl)-)n 197.70  Click
Cl 2p3/2 [Mo(CO)5Clr(P(C6H5)4)] 197.70  Click
Cl 2p3/2 [AuCl((CH3)2S(O)CH2)2] 197.70  Click
Cl 2p3/2 KCl 197.80  Click
Cl 2p3/2 [Os(O2)(NH3)4]Cl2 197.80  Click
Cl 2p3/2 [Os(CO)Cl(P(C6H5)3)2(C5H3NOCH3)] 197.80  Click
Cl 2p3/2 [RhCl(P(C6H5)3)3] 197.80  Click
Cl 2p3/2 [Cr(CO)5Cl(P(C6H5)4)] 197.80  Click
Cl 2p3/2 [As(CH3-C6H4)3]2ClRuCl3RuCl[As(CH3-C6H4)3]2 197.80  Click
Cl 2p3/2 W2(mu-H)(mu-Cl)Cl4(C2H5C5H5N)4 197.80  Click
Cl 2p3/2 [C8H14C5H3]2TiCl2 197.88  Click
Cl 2p3/2 Cs2[Rh2Cl2(HCOO)4] 197.90  Click
Cl 2p3/2 [PtHCl(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [RhCl3(CH3CN)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 CsCl 197.90  Click
Cl 2p3/2 [WCl(CO)2((C6H5)2PCH2CH2P(C6H5)2)(C3H5)] 197.90  Click
Cl 2p3/2 [RhCl2(NO)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [RuCl3(NO)((C6H5)3P)2] 197.90  Click
Cl 2p3/2 [RhCl(O)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [RuCl3(ClC6H4NN)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [RhCl2(C6H5CO)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [RhCl2(CH3OC6H4NN)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [IrCl3(CH3C6H4NNH)(P(C6H5)3)2] 197.90  Click
Cl 2p3/2 [PdCl2((C6H5)2AsCH2As(C6H5)2)2] 197.90  Click
Cl 2p3/2 [Pd2Cl2((C6H5)2PCH2P(C6H5)2)2] 197.90  Click
Cl 2p3/2 [RhCl2(CO)((C6H5)3P)2(CH3(CH2)14(C6H4))] 197.90  Click
Cl 2p3/2 [Mo4Cl4Cl4(P(C2H5)3)4] 197.90  Click
Cl 2p3/2 [C5H5(CH3)5)]2TiCl2 197.96  Click
Cl 2p3/2 [RhCl(C6H5NCO)2(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [RhCl(CS2)(P(C6H5)3)3] 198.00  Click
Cl 2p3/2 C(NH2)3Cl 198.00  Click
Cl 2p3/2 [RhCl2(CHCH2)(P(C6H5)3)3] 198.00  Click
Cl 2p3/2 KCl 198.00  Click
Cl 2p3/2 [PdCl2(C5H5N)2] 198.00  Click
Cl 2p3/2 [RhCl3(C5NH5)3] 198.00  Click
Cl 2p3/2 [RhCl3(C5NH5)3] 198.00  Click
Cl 2p3/2 [Mo6Cl8Cl4(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [PdCl2((C6H5)3P)2] 198.00  Click
Cl 2p3/2 [PtCl2(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [Rh(CO)Cl(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [PtClH(P(C2H5)3)2] 198.00  Click
Cl 2p3/2 [ReCl2(N)((CH3)2P(C6H5))3] 198.00  Click
Cl 2p3/2 [RhCl2(NO2C6H4NN)(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [RhCl2(C6H5)(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [RuCl(CH3C6H4NN)2(P(C6H5)3)2].BF4 198.00  Click
Cl 2p3/2 [RhCl2(CH3C6H4NN)(P(C6H5)3)2] 198.00  Click
Cl 2p3/2 [ReCl(CO)((CH3)2P(C6H5))4] 198.00  Click
Cl 2p3/2 [Pd2SCl2((C6H5)2PCH2P(C6H5)2)2] 198.00  Click
Cl 2p3/2 [RhCl(P(C6H5)3)3] 198.00  Click
Cl 2p3/2 [ReCl(CO)((C6H5)2PCH2CH2P(C6H5)2)2] 198.00  Click
Cl 2p3/2 [RhCl2((C6H5)3P)2(CH3(CH2)14)] 198.00  Click
Cl 2p3/2 RuCl2(P(C6H5)3)3 198.00  Click
Cl 2p3/2 [(Pt2(P(C6H5)3)4S2Pd)2Cl2][PF6]2 198.00  Click
Cl 2p3/2 [C9H16C5H3]2TiCl2 198.01  Click
Cl 2p3/2 [C5H8C5H3][C5H5]TiCl2 198.01  Click
Cl 2p3/2 [C7H12C5H3][C5H5]TiCl2 198.04  Click
Cl 2p3/2 [C7H12C5H3][C10H55]TiCl2 198.07  Click
Cl 2p3/2 [PtCl2(P(C2H5)3)2] 198.10  Click
Cl 2p3/2 [RhCl(C2H4)]2 198.10  Click
Cl 2p3/2 [RhCl(C2H4)]2 198.10  Click
Cl 2p3/2 [TlCl3(C5H5N)2] 198.10  Click
Cl 2p3/2 UCl3 198.10  Click
Cl 2p3/2 RbCl 198.10  Click
Cl 2p3/2 [Mo4Cl4Cl4(P(C4H9)3)4] 198.10  Click
Cl 2p3/2 Pd(NH3)4Cl2 198.10  Click
Cl 2p3/2 [Rh(NH3)6]Cl3 198.10  Click
Cl 2p3/2 [Zr(OH)2(CH3CH(NH2)COO)2]Cl2.3H2O 198.10  Click
Cl 2p3/2 [RhAs(C6H5)4]Cl4.CH3CN 198.10  Click
Cl 2p3/2 [PtCl6(-NHC(CH3)C(OH)C(CH2OH)C(CH2OH)CH-)2] 198.10  Click
Cl 2p3/2 [RuCl(NO)2(P(C6H5)3)2].BF4 198.10  Click
Cl 2p3/2 [N(C4H9)4]2[Mo5Cl13] 198.10  Click
Cl 2p3/2 [TeCl2(CH2P(C6H5)3)2]Cl2 198.10  Click
Cl 2p3/2 [RhCl(C8H12)(-CH2C-H(C6H4)PH2)] 198.10  Click
Cl 2p3/2 [((C6H5)3P=CH2)2TeCl2]Cl2 198.10  Click
Cl 2p3/2 Cl2/GaAs0.96 198.10  Click
Cl 2p3/2 [C5H8C5H3]2TiCl2 198.11  Click
Cl 2p3/2 [C8H14C5H3][C5H5]TiCl2 198.12  Click
Cl 2p3/2 [C5H8C5H3][C5H5]TiCl2 198.15  Click
Cl 2p3/2 [C9H16C5H3][C5H5]TiCl2 198.15  Click
Cl 2p3/2 [Mo2Cl4((C5H5N)NHCH3)2] 198.20  Click
Cl 2p3/2 [Mo2Cl4(P(C2H5)3)4] 198.20  Click
Cl 2p3/2 [RhCl3(S(C2H5)2)3] 198.20  Click
Cl 2p3/2 [RhCl3(S(C2H5)2)3] 198.20  Click
Cl 2p3/2 [VCl(C5H5)2] 198.20  Click
Cl 2p3/2 TiCl4 198.20  Click
Cl 2p3/2 TiCl4 198.20  Click
Cl 2p3/2 CsCl 198.20  Click
Cl 2p3/2 [Mo6Cl8Cl4(C5H5N)2] 198.20  Click
Cl 2p3/2 [PdCl2(C5H5N)2] 198.20  Click
Cl 2p3/2 [PdCl2((CH3)C3HNO(C6H5))2] 198.20  Click
Cl 2p3/2 [Rh(As(C6H5)4)]Cl4.2H2O 198.20  Click
Cl 2p3/2 [RhCl2(CO)(C6H5)(P(C6H5)3)2] 198.20  Click
Cl 2p3/2 [ReCl2(P(CH3)2(C6H5))4] 198.20  Click
Cl 2p3/2 [RhCl2(CO)((C6H5)3P)2(CH3(CH2)14)] 198.20  Click
Cl 2p3/2 (NH4)2[PtCl4] 198.20  Click
Cl 2p3/2 [N(C2H5)4][Mo(CO)5Cl] 198.20  Click
Cl 2p3/2 [RhCl(C8H12)(-CH2C-H(C6H4)PH2)] 198.20  Click
Cl 2p3/2 [(CH3)4N]2TcCl6 198.20  Click
Cl 2p3/2 W2(mu-H)(mu-Cl)Cl4(C5H5N)4 198.20  Click
Cl 2p3/2 [C5H8C5H3][C10H15]TiCl2 198.21  Click
Cl 2p3/2 [C5H5(CH3)5)C5H5]2TiCl2 198.22  Click
Cl 2p3/2 [C7H12C5H3][C5H5]TiCl2 198.22  Click
Cl 2p3/2 [C5H8C5H3][C10H15]TiCl2 198.27  Click
Cl 2p3/2 [C7H12C5H3]2TiCl2 198.28  Click
Cl 2p3/2 [C5H5(CH3)2)C5H5]TiCl2 198.28  Click
Cl 2p3/2 [(C5H5)2]TiCl2 198.29  Click
Cl 2p3/2 [PtCl2(P(C2H5)3)2] 198.30  Click
Cl 2p3/2 [Cu(H2NC(O)NHC(O)NH2)2]Cl2 198.30  Click
Cl 2p3/2 [Mn(H2NC(O)NHC(O)NH2)2]Cl2 198.30  Click
Cl 2p3/2 [NiCl(CFCF2)(P(C2H5)3)2] 198.30  Click
Cl 2p3/2 [NiCl(C6H5)(P(C2H5)3)2] 198.30  Click
Cl 2p3/2 NiCl2 198.30  Click
Cl 2p3/2 [TiCl2(C5H5)2] 198.30  Click
Cl 2p3/2 [PdCl2(CH3(C3HNO)CH3)2] 198.30  Click
Cl 2p3/2 [PtCl2((CH3)C3HNO(C6H5))2] 198.30  Click
Cl 2p3/2 [Re2Cl8(ClP(C2H5)3)2] 198.30  Click
Cl 2p3/2 [Re2Br4Cl4(ClP(C2H5)3)2] 198.30  Click
Cl 2p3/2 [OsCl2(P(C6H5)3)2(C5H4NO)] 198.30  Click
Cl 2p3/2 [OsCl2(P(C6H5)3)2(C5H3NOCH3)] 198.30  Click
Cl 2p3/2 NaCl 198.30  Click
Cl 2p3/2 UCl2O 198.30  Click
Cl 2p3/2 Cl in (-H(C6H4)PH2)n 198.30  Click
Cl 2p3/2 (P(C2H5)2-C6H5)2ClRuCl3Ru(P(C2H5)2-C6H5)3 198.30  Click
Cl 2p3/2 [P(C6H5)2(C7H7)]3RuCl3RuCl2[P(C6H5)2(C7H7)] 198.30  Click
Cl 2p3/2 ZrCl4 198.30  Click
Cl 2p3/2 [C5H5(CH3)2)]2TiCl2 198.35  Click
Cl 2p3/2 [Rh2Cl2(P(C6H5)3)4] 198.40  Click
Cl 2p3/2 [RhCl(C2H4)(P(C6H5)3)2] 198.40  Click
Cl 2p3/2 HCl.nH2O 198.40  Click
Cl 2p3/2 [Mo2Cl4(CH3P(C6H5)2)4] 198.40  Click
Cl 2p3/2 K3[RhCl6] 198.40  Click
Cl 2p3/2 K3[RhCl6] 198.40  Click
Cl 2p3/2 AuCl 198.40  Click
Cl 2p3/2 CuCl 198.40  Click
Cl 2p3/2 CuCl 198.40  Click
Cl 2p3/2 InCl 198.40  Click
Cl 2p3/2 KCl 198.40  Click
Cl 2p3/2 [NiCl2((C2H5)3P)2] 198.40  Click
Cl 2p3/2 [OsCl2(P(C6H5)3)2(C5H4NCOO)] 198.40  Click
Cl 2p3/2 [RhCl(C8H12)(-CH2C-H(C6H4)PH2)] 198.40  Click
Cl 2p3/2 [Tc((CH3)2PCH2CH2P(CH3)2)2Cl2]Cl 198.40  Click
Cl 2p3/2 RuCl3(P(CH3)2C6H5)3 198.40  Click
Cl 2p3/2 AgCl 198.40  Click
Cl 2p3/2 BaCl2 198.40  Click
Cl 2p3/2 TiCl4/W 198.40  Click
Cl 2p3/2 TiCl4/W 198.40  Click
Cl 2p3/2 PdCl2 198.50  Click
Cl 2p3/2 [Rh(NH3)6]Cl3 198.50  Click
Cl 2p3/2 [Hf(OH)2(CH3CH(NH2)COO)2]Cl2.3H2O 198.50  Click
Cl 2p3/2 [PtCl2(C3HNO(C6H5)2)2] 198.50  Click
Cl 2p3/2 [Re2Br2Cl4(P(C2H5)3)2] 198.50  Click
Cl 2p3/2 [RhCl3(P(C6H5)3)3] 198.50  Click
Cl 2p3/2 [RhCl3(P(C6H5)3)3] 198.50  Click
Cl 2p3/2 [PdCl2((NH2)C3NO(CH3)2)] 198.50  Click
Cl 2p3/2 UClO 198.50  Click
Cl 2p3/2 [ReCl(N2)((CH3)2P(C6H5))4] 198.50  Click
Cl 2p3/2 (P(C6H5)3)2ClRuCl3Ru(CO)(P(C6H5)3)2 198.50  Click
Cl 2p3/2 (P(C6H5)3)2ClRuCl3Ru(CS)(P(C6H5)3)2 198.50  Click
Cl 2p3/2 Mo2Cl4(P(CH3)3)4 198.50  Click
Cl 2p3/2 MoWCl4(P(CH3)3)4 198.50  Click
Cl 2p3/2 (-CH(C12H8N)CH2-)n (OC6(CN)2Cl2O)m 198.50  Click
Cl 2p3/2 ZrOCl2 198.50  Click
Cl 2p3/2 TiCl4/W 198.50  Click
Cl 2p3/2 (CH3)3SbCl2 198.51  Click
Cl 2p3/2 [Ru2Cl3(P(C2H5)2-C6H5)6]Cl 198.55  Click
Cl 2p3/2 [PdCl2C6H10] 198.60  Click
Cl 2p3/2 [ReCl3(P(CH3)2C6H5)3] 198.60  Click
Cl 2p3/2 [PdCl2(C3H3NO)2] 198.60  Click
Cl 2p3/2 K2[OsCl6] 198.60  Click
Cl 2p3/2 (C8H12)RhCl2Rh(C8H12) 198.60  Click
Cl 2p3/2 (C8H12)RhCl2Rh(C8H12) 198.60  Click
Cl 2p3/2 [ReCl3(CH3)(N)((CH3)2PC6H5)2] 198.60  Click
Cl 2p3/2 [RhCl2(CH3OC6H4CO)(P(C6H5)3)2] 198.60  Click
Cl 2p3/2 [Rh(NH3)3]Cl3 198.60  Click
Cl 2p3/2 [Rh(NH3)3]Cl3 198.60  Click
Cl 2p3/2 K3[Rh(NO2)3Cl3] 198.60  Click
Cl 2p3/2 K3[Rh(NO2)3Cl3] 198.60  Click
Cl 2p3/2 OsCl3 198.60  Click
Cl 2p3/2 [(C4H9)4N]TcOCl4 198.60  Click
Cl 2p3/2 W2(mu-H)(mu-Cl)Cl4(C2H5C5H5N)4 198.60  Click
Cl 2p3/2 Mo4S4Cl4 198.60  Click
Cl 2p3/2 [Rh2Cl2(P(C6H5)3)4] 198.70  Click
Cl 2p3/2 [N(C2H5)4][InCl2] 198.70  Click
Cl 2p3/2 CuCl2 198.70  Click
Cl 2p3/2 HgCl2 198.70  Click
Cl 2p3/2 K2[PdCl6] 198.70  Click
Cl 2p3/2 [N(C4H9)4]3[Mo2Cl9] 198.70  Click
Cl 2p3/2 [Mo4Cl4Cl4(P(C2H5)3)4] 198.70  Click
Cl 2p3/2 NaCl 198.70  Click
Cl 2p3/2 [As(CH3-C6H4)3]2ClRuCl3RuCl[As(CH3-C6H4)3]2 198.70  Click
Cl 2p3/2 [As(CH3-C6H4)3]3RuCl3RuCl2[As(CH3-C6H4)3] 198.70  Click
Cl 2p3/2 [Tc((C6H5)2PCH2CH2P(C6H5)2)2Cl2]Cl 198.70  Click
Cl 2p3/2 TiCl4/W 198.70  Click
Cl 2p3/2 [As(CH3-C6H4)3]2ClRuCl3RuCl2[As(CH3-C6H4)3] 198.75  Click
Cl 2p3/2 [CdCl2(H2NC(O)NHC(O)NH2)2] 198.80  Click
Cl 2p3/2 Cl2.nH2O 198.80  Click
Cl 2p3/2 [RhCl(C2H4)(P(C6H5)3)2] 198.80  Click
Cl 2p3/2 [PtH(SnCl3)(P(C2H5)3)2] 198.80  Click
Cl 2p3/2 [TiCl(C5H5)2] 198.80  Click
Cl 2p3/2 FeCl2 198.80  Click
Cl 2p3/2 MoCl2 198.80  Click
Cl 2p3/2 K2PdCl4 198.80  Click
Cl 2p3/2 [PdCl2(C6H5CN)2] 198.80  Click
Cl 2p3/2 [RhCl3(CO)3(P(C6H5)3)] 198.80  Click
Cl 2p3/2 K[(N)OsCl4(H2O)] 198.80  Click
Cl 2p3/2 [OsCl2(O)2((C2H5)2P(C6H5))2] 198.80  Click
Cl 2p3/2 [ReCl(CO)((CH3)2P(C6H5))4][FeCl4] 198.80  Click
Cl 2p3/2 LiCl 198.80  Click
Cl 2p3/2 Na[AuCl4] 198.80  Click
Cl 2p3/2 YCl3 198.80  Click
Cl 2p3/2 (-CH(C12H8N)CH2-)n (OC6Cl4O)m 198.80  Click
Cl 2p3/2 (CH3)3SbCl2.SbCl3 198.82  Click
Cl 2p3/2 [SnCl(C6H5)(C6H5C(O)CHC(O)C6H5)2] 198.86  Click
Cl 2p3/2 [RhCl(CO)2(P(C6H5)3)] 198.90  Click
Cl 2p3/2 PdCl2 198.90  Click
Cl 2p3/2 [CuCl2(P(C6H5)4)] 198.90  Click
Cl 2p3/2 [Pd(NH3)2]Cl2 198.90  Click
Cl 2p3/2 [Pd(NH2)2Cl2].2H2O 198.90  Click
Cl 2p3/2 K2[Os(O2)Cl4] 198.90  Click
Cl 2p3/2 [SnCl6(P(C6H5)4)2] 198.90  Click
Cl 2p3/2 PdCl2 198.90  Click
Cl 2p3/2 [PtCl2(C3NO(CH3)2(NH2))2] 199.00  Click
Cl 2p3/2 [N(C3H7)4][InCl4] 199.00  Click
Cl 2p3/2 CaCl2 199.00  Click
Cl 2p3/2 CdCl2 199.00  Click
Cl 2p3/2 FeCl3 199.00  Click
Cl 2p3/2 InCl3 199.00  Click
Cl 2p3/2 [CuCl3(P(C6H5)4)] 199.00  Click
Cl 2p3/2 [ReCl2(N)((C2H5)P(C6H5)2)2] 199.00  Click
Cl 2p3/2 [ReCl(N2)((CH3)2P(C6H5))4]FeCl4 199.00  Click
Cl 2p3/2 PdCl2 199.00  Click
Cl 2p3/2 [AuCl(P(C6H5)3)] 199.05  Click
Cl 2p3/2 [N(C2H5)4][InCl2]Cl2 199.10  Click
Cl 2p3/2 CuCl 199.10  Click
Cl 2p3/2 SrCl2 199.10  Click
Cl 2p3/2 SrCl2 199.10  Click
Cl 2p3/2 PdCl2 199.10  Click
Cl 2p3/2 Os2NCl5 199.10  Click
Cl 2p3/2 W2(mu-H)(mu-Cl)Cl4(C2H5C5H5N)4 199.10  Click
Cl 2p3/2 Ca5(PO4)3Cl 199.10  Click
Cl 2p3/2 CuCl2 199.10  Click
Cl 2p3/2 SrCl2 199.10  Click
Cl 2p3/2 [NH(CH3)3]3[InCl6] 199.20  Click
Cl 2p3/2 [Hg(H2NC(O)NHC(O)NH2)2]Cl2 199.20  Click
Cl 2p3/2 CuCl2 199.20  Click
Cl 2p3/2 MoCl2 199.20  Click
Cl 2p3/2 NiCl2 199.20  Click
Cl 2p3/2 TiCl4 199.20  Click
Cl 2p3/2 TiCl4 199.20  Click
Cl 2p3/2 [ReCl2((CH3)2P(C6H5))2]Cl2 199.20  Click
Cl 2p3/2 W2(mu-H)(mu-Cl)Cl4(C5H5N)4 199.20  Click
Cl 2p3/2 Cs2ZnCl4 199.20  Click
Cl 2p3/2 (ZnCl2)58(CsCl)40(BaCl2)2 199.20  Click
Cl 2p3/2 KCl 199.30  Click
Cl 2p3/2 [SnCl(C6H5)3] 199.30  Click
Cl 2p3/2 [PtCl2(P(C6H5)3)2] 199.30  Click
Cl 2p3/2 cis-[PtCl2(P(C6H5)3)2] 199.30  Click
Cl 2p3/2 (ZnCl2)50(CsCl)40(BaCl2)10 199.30  Click
Cl 2p3/2 (ZnCl2)55(CsCl)40(BaCl2)5 199.30  Click
Cl 2p3/2 ZrCl4 199.30  Click
Cl 2p3/2 CuCl2 199.40  Click
Cl 2p3/2 ZrCl 199.40  Click
Cl 2p3/2 [Mo4Cl4Cl4(P(C4H9)3)4] 199.40  Click
Cl 2p3/2 [Mo4Cl4Cl4(P(C2H5)3)4] 199.40  Click
Cl 2p3/2 (-CH(C12H8N)CH2-)n (OC6Cl4O)m 199.40  Click
Cl 2p3/2 (ZnCl2)50(CsCl)40(BaCl2)10 199.40  Click
Cl 2p3/2 (ZnCl2)58(CsCl)40(BaCl2)2 199.40  Click
Cl 2p3/2 (ZnCl2)55(CsCl)40(BaCl2)5 199.40  Click
Cl 2p3/2 CrCl3 199.40  Click
Cl 2p3/2 [Fe(CH3C(O)CClC(O)CH3)3] 199.50  Click
Cl 2p3/2 MoCl2 199.50  Click
Cl 2p3/2 [Sn(C6H5)2Cl2] 199.50  Click
Cl 2p3/2 ZrCl3 199.50  Click
Cl 2p3/2 TiCl3 199.50  Click
Cl 2p3/2 [Pt2(P(C6H5)3)4SSCH2Cl]Cl 199.50  Click
Cl 2p3/2 [SnCl3(C8H17)(C4H4N2)] 199.60  Click
Cl 2p3/2 [SnCl4(C4H4N2)] 199.60  Click
Cl 2p3/2 [Mo2Cl4(P(C2H5)3)4] 199.60  Click
Cl 2p3/2 [PCl(OC2H5)2] 199.60  Click
Cl 2p3/2 [N(C4H9)4]2[Mo5Cl13] 199.60  Click
Cl 2p3/2 ZnCl2 199.70  Click
Cl 2p3/2 Sc7Cl10C2 199.70  Click
Cl 2p3/2 [SnCl4(C4H4N2)2] 199.80  Click
Cl 2p3/2 (-CH2CH(Cl)-)n 199.80  Click
Cl 2p3/2 Sc2Cl2C 199.80  Click
Cl 2p3/2 Zr2Cl2C 199.80  Click
Cl 2p3/2 ZrCl2 199.80  Click
Cl 2p3/2 [SnCl3(C6H5)(C4H4N2)] 199.90  Click
Cl 2p3/2 [Mo2Cl4(CH3P(C6H5)2)4] 199.90  Click
Cl 2p3/2 MoCl2 199.90  Click
Cl 2p3/2 [Mo6Cl8Cl4(SO(CH3)2)2] 199.90  Click
Cl 2p3/2 [SnCl3(CH3)(C4H4N2)] 199.90  Click
Cl 2p3/2 ScCl3 199.90  Click
Cl 2p3/2 NbCl5 199.90  Click
Cl 2p3/2 [SnCl2(C6H5)2(C4H4N2)] 200.00  Click
Cl 2p3/2 [SnCl3(C4H9)(C4H4N2)] 200.00  Click
Cl 2p3/2 [Sn(C6H5)Cl3] 200.00  Click
Cl 2p3/2 Sc7Cl10 200.00  Click
Cl 2p3/2 (ZnCl2)50(CsCl)40(BaCl2)10 200.00  Click
Cl 2p3/2 (ZnCl2)58(CsCl)40(BaCl2)2 200.00  Click
Cl 2p3/2 (ZnCl2)55(CsCl)40(BaCl2)5 200.00  Click
Cl 2p3/2 [PCl(C6H5)2] 200.10  Click
Cl 2p3/2 (-CH2CH(Cl)-)n 200.10  Click
Cl 2p3/2 CH3Cl/Pt 200.10  Click
Cl 2p3/2 ZnCl2 200.10  Click
Cl 2p3/2 CH3(CH2)2CH(C6H4COCl)(CH2)10CH3 200.20  Click
Cl 2p3/2 ZnCl2 200.20  Click
Cl 2p3/2 MgCl2/Au 200.20  Click
Cl 2p3/2 [PCl2(C6H5)] 200.30  Click
Cl 2p3/2 PCl3 200.30  Click
Cl 2p3/2 ClCH2CH2Br/Pt 200.30  Click
Cl 2p3/2 ClCH2CH2Br/Pt 200.30  Click
Cl 2p3/2 [NiBr(CClCCl2)(P(C2H5)3)2] 200.40  Click
Cl 2p3/2 [Mo6Cl8Cl4(C5H5N)2] 200.40  Click
Cl 2p3/2 [Mo6Cl8Cl4(P(C6H5)3)2] 200.40  Click
Cl 2p3/2 CH3(CH2)13O(C6H4CO)Cl 200.40  Click
Cl 2p3/2 (-CH2CH(C6H4Cl)-)n 200.44  Click
Cl 2p3/2 Ca(ClO)2 200.50  Click
Cl 2p3/2 (-CH2CH(C6H4Cl)-)n 200.50  Click
Cl 2p3/2 MgCl2/Au 200.50  Click
Cl 2p3/2 (-CH2C(CH3)(C(O)OCH2CH2Cl)-)n 200.53  Click
Cl 2p3/2 (-CH2CH(C6H4Cl)-)n 200.53  Click
Cl 2p3/2 NbCl5 200.60  Click
Cl 2p3/2 (-CH2CHC(Cl)CH2-)n 200.63  Click
Cl 2p3/2 (-CH2CH(Cl)-)n 200.64  Click
Cl 2p3/2 (-CCl2CH2-)n 200.78  Click
Cl 2p3/2 [POCl(C2H5O)2] 200.80  Click
Cl 2p3/2 (-CH2CHCl-) (partial unit) 200.80  Click
Cl 2p3/2 (-C-HCH3) (partial unit) 200.81  Click
Cl 2p3/2 C0.795N0.085O0.061Cl0.055 200.90  Click
Cl 2p3/2 C46H30Cl2N6O4 200.90  Click
Cl 2p3/2 C6H5Cl 201.00  Click
Cl 2p3/2 C6H5CCl3 201.00  Click
Cl 2p3/2 (-CH(C12H8N)CH2-)n (OC6Cl4O)m 201.00  Click
Cl 2p3/2 C0.775N0.103O0.067Cl0.060 201.00  Click
Cl 2p3/2 [Co(CH3C(O)CClC(O)CH3)3] 201.10  Click
Cl 2p3/2 (-CH(C12H8N)CH2-)n (OC6Cl4O)m 201.10  Click
Cl 2p3/2 (-CH(C12H8N)CH2-)n (OC6(CN)2Cl2O)m 201.20  Click
Cl 2p3/2 [POCl2(C2H5O)] 201.30  Click
Cl 2p3/2 HSO3Cl 201.40  Click
Cl 2p3/2 [Cu(CH3C(O)CClC(O)CH3)3] 201.50  Click
Cl 2p3/2 Cl3OP 201.70  Click
Cl 2p3/2 [Cr(CH3C(O)CClC(O)CH3)3] 201.90  Click
Cl 2p3/2 NaClO2 203.40  Click
Cl 2p3/2 KClO3 205.90  Click
Cl 2p3/2 Ba(ClO3).H2O 205.90  Click
Cl 2p3/2 Ba(ClO3)2.H2O 205.90  Click
Cl 2p3/2 NaClO3 206.30  Click
Cl 2p3/2 NaClO3 206.40  Click
Cl 2p3/2 NaClO3 206.40  Click
Cl 2p3/2 KClO3 206.50  Click
Cl 2p3/2 KClO3 206.70  Click
Cl 2p3/2 [Co(CH3C(NOH)C(CH3)NCH2CH2NHCH2CH2NHCH2CH2NC(CH3)C(NO)CH3)](ClO4)2 207.00  Click
Cl 2p3/2 Ba(ClO4)2 208.20  Click
Cl 2p3/2 Ba(ClO4)2 208.20  Click
Cl 2p3/2 KClO4 208.30  Click
Cl 2p3/2 CuClO4 208.40  Click
Cl 2p3/2 [Au9(P(C6H5)3)8](ClO4)3 208.55  Click
Cl 2p3/2 Ca(ClO4)2.4H2O 208.60  Click
Cl 2p3/2 NaClO4 208.60  Click
Cl 2p3/2 [Rh(H2O)6](ClO4)3 208.70  Click
Cl 2p3/2 KClO4 208.70  Click
Cl 2p3/2 NaClO4 208.90  Click
Cl 2p3/2 LiClO4 209.40  Click
Cl 2p3/2 LiClO4 209.40  Click
 

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies on Chlorine-containing Materials

 


 

Expert Knowledge Explanations

 


 

 

Chlorine Chemical Compounds

 

Cupric Chloride, CuCl2
pressed powder



Survey Spectrum from CuCl2
Flood gun is ON, C (1s) BE = 285.0 eV
pressed powder 

Cl (2p) Chemical State Spectrum from CuCl2
Flood gun is ON, C (1s) BE = 285.0 eV
pressed powder 

   .
C (1s) Chemical State Spectrum from CuCl2
Flood gun is ON, C (1s) BE = 285.0 eV
pressed powder 
Cu (2p3/2) Chemical State Spectrum from CuCl2
Flood gun is ON, C (1s) BE = 285.0 eV
pressed powder 

   .
Valence Band Spectrum from CuCl2
Flood gun is ON, C (1s) BE = 285.0 eV
pressed powder 
Cu (3s) and Cu (3p) Spectrum from CuCl2
Flood gun is ON, C (1s) BE = 285.0 eV
pressed powder 

 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of KCl

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

Copyright ©:  The XPS Library 

 



 

XPS Facts, Guidance & Information

 Periodic Table 

    Element   Chlorine (Cl)
 
    Primary XPS peak used for Peak-fitting :   Cl (2p)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for Chlorine “p” orbital:  1.64 eV
 
    Binding Energy (BE) of Primary XPS Signal:   199 eV
 
    Scofield Cross-Section (σ) Value:   Cl (2p3/2) = 1.51       Cl (2p1/2) = 0.775
 
    Conductivity:      
    Range of Cl (2p3/2) Chemical State BEs:   xxx eV range   (Cl- to -Clx)  
    Signals from other elements that overlap
Cl (2p3/2) Primary Peak:
     
    Bulk Plasmons:   ~xxx eV above peak max for pure  
    Shake-up Peaks:   ??  
    Multiplet Splitting Peaks:   not possible  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 



 

Information Useful for Peak-fitting Cl (2p3/2)

  • FWHM (eV) of Cl (2p3/2) in Metal Cl- :  ~1.1 eV using 50 eV Pass Energy after ion etching:
  • FWHM (eV) of Cl (2p3/2) in Cl-C polymer  ~1.6 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  199 eV for Cl (2p3/2) in Metals with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Cl (2p3/2):  xx

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.
  • Constraints used on Peak-fitting: typically constrain the peak area ratios based on the Scofield cross-section values
  • Asymmetry for Conductive materials:  20-30% with increased Lorentzian %
  • Peak-fitting “2s” or “3s” Peaks:  Often need to use 50-60% Lorentzian peak-shape
  • Notes:
    • Other Oxidation States can appear as small peaks when peak-fitting
    • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
    • Gaseous state materials often display asymmetric tails due to vibrational broadening.
    • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
    • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Metal Chlorides

  • METAL Chloride thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • METAL Chloride degrades slightly when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal Cl (2p) peak as well as Cl (2s)
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Metal Chloride (Cl)

  • Conductivity:  Metal Chlorides do not readily develops a native oxide that is sensitive to Flood Gun.
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Cl (2p) at 199 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  190 – 210 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  180 – 280 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching metals and various reactive surfaces.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature

from Thermo Scientific Website

 

 
 



End of File