Cro Cr2O3 CrO3 Cr2S Cr2(SO4)3 K2CrO4  PbCrO4 CrF  Cr3C2 CrB  CrN  CrSi  CrSi2 SS-304    

Basic XPS Information Section

  The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                       XPS Database of Polymers               → Six (6) BE Tables


 

Chromium (Cr)

 

Chromite – FeCr2O4 Chromium – Cro Uvarovite  – Ca3Cr2(SiO4)3

 

  Page Index
  • Expert Knowledge & Explanations


Chromium (Cro) Metal

 Peak-fits, BEs, FWHMs, and Peak Labels

 


  .
Chromium (Cro) Metal
Cr (2p) Spectrum – raw spectrum

ion etched clean
Chromium (Cro) Metal
Peak-fit of Cr (2p) Spectrum
w/o asymm


 

 Periodic Table – HomePage  
Chromium (Cro) Metal
Cr (2p) Spectrum –
extended range 
Chromium (Cro) Metal
Peak-fit of Cr (2p) Spectrum (w asymm)

 .

Chromium (Cro) Metal
Cro metal (3p) and (3s) – raw spectrum
Chromium (Cro) Metal
Peak-fit of Cro metal (3p) and (3s) 

 Periodic Table – HomePage  

Survey Spectrum of Chromium (Cro) Metal
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Chromium (Cro) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
F (1s) overlaps Cr (2s) 695 3.91 14.5
  Cr (2p1/2) 584 3.98 16.1
Te (3d) overlaps Cr (2p3/2) 574.29 7.69 16.1
Al (2p), Pt (4f), Cu (3p) overlaps Cr (3s) 74 0.596 22.4
  Cr (3p) 43 1.173 22.8

σ:  abbreviation for the term Scofield Photoionization Cross-Section which is used with IMFP and TF to generate TSFs and atom% quantitation

Energy Loss Peaks

~20 eV

Auger Peaks

Energy Loss:  ~20 eV above peak max
Expected Bandgap for Cr2O3: ~3 eV 

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table


 

Valence Band Spectrum from Cro Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching


 

Plasmon Peaks from Cro Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Cr (2p) – Extended Range Spectrum Cr (2p) – Extended Range Spectrum – Vertically Zoomed
 

 Periodic Table

Cr (LMM) Auger Peaks from Cro 
 Fresh exposed bulk produced by extensive Ar+ ion etching

Cro metal Native Cr Oxide

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Artefacts Caused by Argon Ion Etching

Chromium Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Cro

can form when Argon Ions are used
to removed surface contamination


 

Side-by-Side Comparison of
Chromium Native Oxide & Chromium Oxide (Cr2O3)
Peak-fits, BEs, FWHMs, and Peak Labels

Cr Native Oxide Cr2O(man-made single crystal, <100>)
Cr (2p) from Cr Native Oxide
Flood Gun OFF
As-Measured, C (1s) at 285.0 eV 
Cr (2p) from Cr2O3 – exposed bulk of crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 

 Periodic Table 

 
Cr Native Oxide Cr2O– (man-made single crystal, <100>)
C (1s) from Cr Native Oxide
on Chromium
As-Measured, C (1s) at 285.0 eV (Flood Gun OFF)

C (1s) from Cr2O3 – exposed bulk of crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


 


   
Cr Native Oxide Cr2O– (man-made single crystal, <100>)
O (1s) from Cr Native Oxide
on Chromium
As-Measured, C (1s) at 285.0 eV (Flood Gun OFF)

O (1s) from Cr2O3 – exposed bulk of crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 


 
Cr Native Oxide Cr2O– (man-made single crystal, <100>)
Cr (KLL) Auger Peaks from Cr Native Oxide
on Chromium
As-Measured, C (1s) at 285.0 eV (Flood Gun OFF)

Cr (KLL) Auger Peaks from Cr2O3 – exposed bulk of crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


 

 

Survey Spectrum of Chromium Native Oxide
with Peaks Integrated, Assigned and Labelled

 

 Periodic Table 


 

 

Survey Spectrum of Chromium Oxide (Cr2O3)
with Peaks Integrated, Assigned and Labelled


 Periodic Table  


 

Overlays of Cr (2p) Spectra for
Cr Native Oxide and Chromium Oxide, Cr2O

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 Overlay of Cr metal and Cr Native Oxide – Cr (2p)
Native Oxide C (1s) = 285.0
Flood gun OFF

 Overlay of Cr metal and Cr2O3 – Cr (2p)
Pure Oxide C (1s) = 285.0 eV
Chemical Shift:  2.0
 Periodic Table  Copyright ©:  The XPS Library 

 

Overlay of of Cr (2p)
Cro Metal, Cr Native Oxide, & Cr2O3 (xtal)

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
Cro, Cr2O3

Cro
Ion etched clean
Cr2O3 – (single crystal, <100>)
Flood gun is ON,  Charge referenced so C (1s) = 285.0 eV


Overlay of Valence Band Spectra for

Cr metal and Cr2O3

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Chromium Minerals, Gemstones, and Chemical Compounds

 

Lopezite – K2Cr2O7  Eskolaite – Cr2O3 Tarapacaite – K2(CrO4 Crocite -PbCrO4

 Periodic Table 



 

 

Six (6) Chemical State Tables of Cr (2p3/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Cr (2p3/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Cr 24 Cr23C6 574.2 eV   285.0 eV The XPS Library
Cr 24 Cr-B2 574.3 eV   285.0 eV The XPS Library
Cr 24 Cr-B2 (N*1) 574.3 eV   284.8 eV Avg BE – NIST
Cr 24 Cr – element 574.4 eV   285.0 eV The XPS Library
Cr 24 Cr3C2 574.5 eV   285.0 eV The XPS Library
Cr 24 Cr2-S3 (N*2) 574.8 eV 575.4 eV 284.8 eV Avg BE – NIST
Cr 24 Cr-N 575.5 eV   285.0 eV The XPS Library
Cr 24 Cr-O2 (N*1) 576.3 eV   285.0 eV The XPS Library
Cr 24 Cr-2O3 576.7 eV   285.0 eV The XPS Library
Cr 24 Cr-(OH)3 (N*3) 577.0 eV 577.4 eV 284.8 eV Avg BE – NIST
Cr 24 CuCr2O4 (N*1) 577.1 eV   284.8 eV Avg BE – NIST
Cr 24 Cr(NO3)3 (N*1) 577.3 eV   284.8 eV Avg BE – NIST
Cr 24 Cr-Cl3  (N*2) 577.4 eV 577.8b eV 284.8 eV Avg BE – NIST
Cr 24 Cr-O3 (N*4) 578.9 eV 580.1 eV 285.0 eV The XPS Library
Cr 24 CrF3 (N*3) 579.3 eV 580.3 eV 284.8 eV Avg BE – NIST
Cr 24 Li2CrO4 (N*2) 579.8 eV   284.8 eV Avg BE – NIST
Cr 24 Na2CrO4 (N*2) 579.8 eV 580.5 eV 284.8 eV Avg BE – NIST
Cr 24 Cr-(OH)6     285.0 eV The XPS Library
Cr 24 Cr-Ox     285.0 eV The XPS Library
Cr 24 Cr-Si     285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Cr (2p3/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Cr (2p3/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy Cr (2p3)
Cr metal 574.3
Cr (III) oxide ~576
Cr (VI) oxide ~580

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Cr (2p3/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Cr (2p3/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Cr 2p3/2 Cr 574.4 ±0.1 574.3 574.5
Cr 2p3/2 Cr Nitride 576.0 ±0.3 575.7 576.2
Cr 2p3/2 CrBr3 576.1 ±0.2 575.9 576.3
Cr 2p3/2 K3Cr(CN)6 576.4 ±0.4 576.0 576.8
Cr 2p3/2 CrOOH 577.0 ±0.4 576.6 577.3
Cr 2p3/2 Cr(acac)3 577.0 ±0.9 576.1 577.8
Cr 2p3/2 CrCl3 577.4 ±0.4 577.0 577.7
Cr 2p3/2 Cr(OH)3 577.4 ±0.4 577.0 577.8
Cr 2p3/2 Oxide 578.1 ±1.7 576.4 579.8
Cr 2p3/2 K2Cr2O7 579.9 ±0.3 579.6 580.2
Cr 2p3/2 CrF3 580.5 ±0.5 580.0 580.9

 

 Periodic Table 



 

 

Histograms of NIST BEs for Cr (2p3/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  574.2 eV for Cro based on 15 literature BEs Histogram indicates:  576.5 eV for Cr2O3 based on 24 literature BEs

Table #6


NIST Database of Cr (2p3/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Cr 2p3/2 Cr 573.80  Click
Cr 2p3/2 Cr 573.80  Click
Cr 2p3/2 Cr73.5P26.5 573.83  Click
Cr 2p3/2 Cr73.5P26.5 573.83  Click
Cr 2p3/2 Cr 573.90  Click
Cr 2p3/2 Cr 573.90  Click
Cr 2p3/2 Cr 573.90  Click
Cr 2p3/2 Cr90.5P9.5 573.91  Click
Cr 2p3/2 Cr90.5P9.5 573.91  Click
Cr 2p3/2 Cr/(-C4HS((CH2)5CH3)-)n 573.95  Click
Cr 2p3/2 Cr/(-C4HS((CH2)5CH3)-)n 573.95  Click
Cr 2p3/2 Cr92.5P7.5 573.99  Click
Cr 2p3/2 Cr92.5P7.5 573.99  Click
Cr 2p3/2 Cr 574.00  Click
Cr 2p3/2 Cr 574.10  Click
Cr 2p3/2 [Cr(C6H6)2] 574.10  Click
Cr 2p3/2 Cr 574.13  Click
Cr 2p3/2 CrP 574.17  Click
Cr 2p3/2 CrP 574.17  Click
Cr 2p3/2 Cr 574.18  Click
Cr 2p3/2 Cr 574.20  Click
Cr 2p3/2 Cr 574.20  Click
Cr 2p3/2 Cr 574.20  Click
Cr 2p3/2 [Cr(C6H6)2]/Ni 574.20  Click
Cr 2p3/2 Cr7C3 574.20  Click
Cr 2p3/2 Cr 574.26  Click
Cr 2p3/2 CrB2 574.30  Click
Cr 2p3/2 Cr 574.30  Click
Cr 2p3/2 [Cr(C7H7)(C5H5)] 574.30  Click
Cr 2p3/2 Fe85Cr15 574.30  Click
Cr 2p3/2 Cr2Se3 574.30  Click
Cr 2p3/2 Cr 574.31  Click
Cr 2p3/2 Cr 574.40  Click
Cr 2p3/2 Cr 574.40  Click
Cr 2p3/2 B4Cr15Ni81 574.40  Click
Cr 2p3/2 B4Cr15Ni81 574.40  Click
Cr 2p3/2 (CH3)(C(O)OH)(C6H4)Cr(CO)3 574.40  Click
Cr 2p3/2 Fe76Cr24 574.50  Click
Cr 2p3/2 Zn0.60Cd0.40Cr2Se4 574.50  Click
Cr 2p3/2 Cr 574.60  Click
Cr 2p3/2 [Cr(C7H7)(C5H5)] 574.60  Click
Cr 2p3/2 [Cr(C6H6)2]/Ni 574.60  Click
Cr 2p3/2 (C5H5)Fe(C5H4-C(O)-C6H5)Cr(CO)3 574.60  Click
Cr 2p3/2 CdCr2Se4 574.60  Click
Cr 2p3/2 C6H6Cr(CO)3 574.66  Click
Cr 2p3/2 Cr 574.70  Click
Cr 2p3/2 (C5H5)Fe(C5H4)-C(O)-CH2-(C6H5)Cr(CO)3 574.70  Click
Cr 2p3/2 ZnCr2Se4 574.70  Click
Cr 2p3/2 Zn0.45Cd0.55Cr2Se4 574.70  Click
Cr 2p3/2 ((CH3)3C6H3)Cr(CO)3 574.71  Click
Cr 2p3/2 (CH3)6C6Cr(CO)3 574.75  Click
Cr 2p3/2 [Cr2(CO)10(N2H2)] 574.80  Click
Cr 2p3/2 [Cr(C5H5)2] 574.80  Click
Cr 2p3/2 [Cr(C5H5)2] 574.80  Click
Cr 2p3/2 [Cr(C5H5)2] 574.80  Click
Cr 2p3/2 Cr2N 574.80  Click
Cr 2p3/2 Cr2S3 574.80  Click
Cr 2p3/2 Cr/(-C4HS((CH2)5CH3)-)n 574.80  Click
Cr 2p3/2 Cr/(-C4HS((CH2)5CH3)-)n 574.80  Click
Cr 2p3/2 (CH3C6H4CH3)Cr(CO)3 574.87  Click
Cr 2p3/2 [Cr(CO)5NH3] 574.90  Click
Cr 2p3/2 [Cr(CO)6] 574.90  Click
Cr 2p3/2 CH3-C(O)-(C6H5)Cr(CO)3 574.90  Click
Cr 2p3/2 Cr3C2 574.90  Click
Cr 2p3/2 Zn0.40Cd0.60Cr2S4 575.00  Click
Cr 2p3/2 ((CH3)4C6H2)Cr(CO)3 575.05  Click
Cr 2p3/2 [Cr(CO)5Cl(P(C6H5)4)] 575.10  Click
Cr 2p3/2 TlCr5Se8 575.10  Click
Cr 2p3/2 C6H5OCH3Cr(CO)3 575.11  Click
Cr 2p3/2 C6H5CH3Cr(CO)3 575.13  Click
Cr 2p3/2 [Cr2(CO)10(N2H4)] 575.20  Click
Cr 2p3/2 [Cr(CO)5P(CH3)3] 575.20  Click
Cr 2p3/2 [Cr(CO)5P(CH3)3] 575.20  Click
Cr 2p3/2 Zn0.60Cd0.40Cr2S4 575.20  Click
Cr 2p3/2 [Cr(CO)5PH3] 575.30  Click
Cr 2p3/2 Al0.7Cr1.3ZnS4 575.30  Click
Cr 2p3/2 CdCr0.3In1.7S4 575.30  Click
Cr 2p3/2 CdCr2S4 575.30  Click
Cr 2p3/2 ZnCr2S4 575.30  Click
Cr 2p3/2 [Cr(C6H6)2] 575.40  Click
Cr 2p3/2 [Cr(CO)5(N2H4)] 575.40  Click
Cr 2p3/2 CdCr0.3In1.7S4 575.40  Click
Cr 2p3/2 ZnCr2S4 575.40  Click
Cr 2p3/2 [Cr(CO)5Br(P(C6H5)4)] 575.40  Click
Cr 2p3/2 (C6H5)-C(O)-(C6H5)Cr(CO)3 575.40  Click
Cr 2p3/2 Cr2S3 575.40  Click
Cr 2p3/2 CrO2 575.40  Click
Cr 2p3/2 [Cr(CO)5NH3] 575.50  Click
Cr 2p3/2 [Cr(CO)5NH3] 575.50  Click
Cr 2p3/2 Al0.7Cr1.3ZnS4 575.50  Click
Cr 2p3/2 CdCr2S4 575.50  Click
Cr 2p3/2 NiCr2O4 575.50  Click
Cr 2p3/2 [Cr(CO)5(P(C6H5)3)] 575.60  Click
Cr 2p3/2 Cr(CO)5(C5H4P(C6H5)2)2FeCr(CO)5 575.60  Click
Cr 2p3/2 CrN 575.60  Click
Cr 2p3/2 [Cr(CO)5(As(C6H5)3)] 575.68  Click
Cr 2p3/2 [Cr(CO)5(Sb(C6H5)3)] 575.68  Click
Cr 2p3/2 [Cr(CO)3(C6H6)] 575.70  Click
Cr 2p3/2 CrN 575.70  Click
Cr 2p3/2 K3[Cr(SCN)6] 575.80  Click
Cr 2p3/2 CrN 575.80  Click
Cr 2p3/2 CrN 575.80  Click
Cr 2p3/2 CrLaO3 575.80  Click
Cr 2p3/2 MnFe1.5Cr0.5O4 575.80  Click
Cr 2p3/2 Cr(CO)5(C5H4P(C6H5)2)2Fe 575.80  Click
Cr 2p3/2 Cr2O3 575.90  Click
Cr 2p3/2 MnCr2O4 575.90  Click
Cr 2p3/2 La0.8Sr0.2CrO3 575.90  Click
Cr 2p3/2 Cr2O3 576.00  Click
Cr 2p3/2 NiCr2O4 576.00  Click
Cr 2p3/2 Fe1.0Cr2.0O4 576.00  Click
Cr 2p3/2 CoFe0.5Cr1.5O4 576.00  Click
Cr 2p3/2 LaCrO3 576.00  Click
Cr 2p3/2 [Cr(CH3C(O)CHC(O)CH3)3] 576.05  Click
Cr 2p3/2 [CrCl2C5H5] 576.10  Click
Cr 2p3/2 Cr2N 576.10  Click
Cr 2p3/2 Cr2O3 576.10  Click
Cr 2p3/2 Cr2O3 576.10  Click
Cr 2p3/2 CoFe1.5Cr0.5O4 576.10  Click
Cr 2p3/2 CoFeCrO4 576.10  Click
Cr 2p3/2 Zr[Cr3.21Fe1.90(CH3COO)1.39(OH)11.94](PO4)2.5.2H2O 576.10  Click
Cr 2p3/2 Cr2O3 576.10  Click
Cr 2p3/2 Cr2O3 576.10  Click
Cr 2p3/2 K3[Cr(CN)6] 576.20  Click
Cr 2p3/2 CrBr3 576.20  Click
Cr 2p3/2 Cr2O3 576.20  Click
Cr 2p3/2 Cr2O3 576.20  Click
Cr 2p3/2 Cr2O3 576.20  Click
Cr 2p3/2 [N(C2H5)4][Cr(CO)5Cl] 576.20  Click
Cr 2p3/2 Fe1.4Cr1.6O4 576.20  Click
Cr 2p3/2 Zr[Cr0.61Fe5.64(CH3COO)0.38(OH)16.37](PO4)2.4.9H2O 576.20  Click
Cr 2p3/2 [Cr(CO)6] 576.30  Click
Cr 2p3/2 [Cr(CO)6] 576.30  Click
Cr 2p3/2 [Cr(CO)3(C6H6)] 576.30  Click
Cr 2p3/2 CrO2 576.30  Click
Cr 2p3/2 Cr2O3 576.30  Click
Cr 2p3/2 MnFe0.5Cr1.5O4 576.30  Click
Cr 2p3/2 Zr[Cr1.32Fe5.58(CH3COO)0.64(OH)18.06](PO4)2.6.5H2O 576.30  Click
Cr 2p3/2 Cr2O3 576.30  Click
Cr 2p3/2 [Cr(C6H6)2]I 576.40  Click
Cr 2p3/2 CrCuO2 576.40  Click
Cr 2p3/2 CrCuO2 576.40  Click
Cr 2p3/2 CoCr2O4 576.40  Click
Cr 2p3/2 MnFeCrO4 576.40  Click
Cr 2p3/2 Cr2O3 576.40  Click
Cr 2p3/2 Cr2O3 576.40  Click
Cr 2p3/2 NiFeCrO4 576.40  Click
Cr 2p3/2 Mn0.75Fe0.25Cr2O4 576.40  Click
Cr 2p3/2 Fe2Cr1.0O4 576.40  Click
Cr 2p3/2 Zr[Cr3.46Fe3.56(CH3COO)1.53(OH)17.53](PO4)2.11.2H2O 576.40  Click
Cr 2p3/2 Zr[Cr3.33Fe1.38(CH3COO)1.47(OH)10.61](PO4)2.6.9H2O 576.40  Click
Cr 2p3/2 PrCrO3 576.40  Click
Cr 2p3/2 Cr2O3 576.40  Click
Cr 2p3/2 Mg0.1(Cr2O3)0.9 576.40  Click
Cr 2p3/2 K3[Cr(CN)6] 576.45  Click
Cr 2p3/2 CrOx 576.50  Click
Cr 2p3/2 Cr2O3 576.50  Click
Cr 2p3/2 Cr2O3 576.50  Click
Cr 2p3/2 Cr2O3 576.50  Click
Cr 2p3/2 Cr2O3 576.50  Click
Cr 2p3/2 ZnCr2O4 576.50  Click
Cr 2p3/2 NiFe1.5Cr0.5O4 576.50  Click
Cr 2p3/2 Mn0.25Fe0.75Cr2O4 576.50  Click
Cr 2p3/2 NiFe0.5Cr1.5O4 576.50  Click
Cr 2p3/2 Zr[Cr2.53Fe5.61(CH3COO)1.17(OH)21.25](PO4)2.8.7H2O 576.50  Click
Cr 2p3/2 Zr[Cr1.97Fe2.56(CH3COO)0.85(OH)10.74](PO4)2.3.9H2O 576.50  Click
Cr 2p3/2 Zr[Cr3.53Fe1.10(CH3COO)1.47(OH)10.42](PO4)2.5.4H2O 576.50  Click
Cr 2p3/2 Zr[Cr2.70Fe0.60(CH3COO)1.27(OH)6.63](PO4)2.6.4H2O 576.50  Click
Cr 2p3/2 CrOx 576.60  Click
Cr 2p3/2 Cr2O3 576.60  Click
Cr 2p3/2 Cr2O3 576.60  Click
Cr 2p3/2 Cr2O3 576.60  Click
Cr 2p3/2 Cr2O3 576.60  Click
Cr 2p3/2 Cr2O3 576.60  Click
Cr 2p3/2 Fe2.4Cr0.6O4 576.60  Click
Cr 2p3/2 Mn0.5Fe0.5Cr2O4 576.60  Click
Cr 2p3/2 (Cr2O3)5(CaO)20.531(MgO)19.725(Al2O3)5.146(SiO2)50.098 576.60  Click
Cr 2p3/2 NdCrO3 576.60  Click
Cr 2p3/2 SmCrO3 576.60  Click
Cr 2p3/2 Cr2O3 576.63  Click
Cr 2p3/2 Cr2O3 576.63  Click
Cr 2p3/2 Cr2O3 576.63  Click
Cr 2p3/2 Cr2O3 576.63  Click
Cr 2p3/2 CrI3 576.70  Click
Cr 2p3/2 Cr2O3 576.70  Click
Cr 2p3/2 Cr2O3 576.70  Click
Cr 2p3/2 CrPS4 576.70  Click
Cr 2p3/2 EuCrO3 576.70  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 GdCrO3 576.80  Click
Cr 2p3/2 Cr2O3 576.80  Click
Cr 2p3/2 HCrO2 576.90  Click
Cr 2p3/2 H2V4Cr8O31.nH2O 576.90  Click
Cr 2p3/2 Cr2(CrO4)3 576.90  Click
Cr 2p3/2 H2V11.5Cr0.5O31.nH2O 576.90  Click
Cr 2p3/2 H2V10Cr2O31.nH2O 576.90  Click
Cr 2p3/2 H2V8Cr4O31.nH2O 576.90  Click
Cr 2p3/2 H2V6Cr6O31.nH2O 576.90  Click
Cr 2p3/2 [Cr(CO)6] 577.00  Click
Cr 2p3/2 Cr(OH)3 577.00  Click
Cr 2p3/2 Cr(OH)O 577.00  Click
Cr 2p3/2 LiCrO2 577.00  Click
Cr 2p3/2 LiCrO2 577.00  Click
Cr 2p3/2 NaCrO2 577.00  Click
Cr 2p3/2 NaCrO2 577.00  Click
Cr 2p3/2 O2/(Cr18Ni82) 577.00  Click
Cr 2p3/2 B6Cr14Fe32Ni36P12Ox 577.00  Click
Cr 2p3/2 TbCrO3 577.00  Click
Cr 2p3/2 DyCrO3 577.00  Click
Cr 2p3/2 Cr(OH)3 577.10  Click
Cr 2p3/2 Cr(OH)3 577.10  Click
Cr 2p3/2 Cr2O3 577.10  Click
Cr 2p3/2 CuCr2O4 577.10  Click
Cr 2p3/2 ZrP2.3Cr4.4O22.0 577.10  Click
Cr 2p3/2 ZrP2.3Cr3.2O15.2 577.10  Click
Cr 2p3/2 Cr(OH)3 577.10  Click
Cr 2p3/2 NaCrO2 577.20  Click
Cr 2p3/2 ZnCr2O4 577.20  Click
Cr 2p3/2 Cr2O3 577.20  Click
Cr 2p3/2 CrOOH 577.20  Click
Cr 2p3/2 Sn[Cr4(OH)7(CH3COO)(OH2)7]0.67H0.4(PO4)2.3H2O 577.20  Click
Cr 2p3/2 HoCrO3 577.20  Click
Cr 2p3/2 Cr(OH)3 577.30  Click
Cr 2p3/2 Cr(NO3)3 577.30  Click
Cr 2p3/2 Cr2O3 577.30  Click
Cr 2p3/2 ZrP2.2Cr3.5O16.8 577.30  Click
Cr 2p3/2 H2V10.0Cr2.0O31.nH2O 577.30  Click
Cr 2p3/2 H2V9.0Cr3.0O31.nH2O 577.30  Click
Cr 2p3/2 CrCl3 577.40  Click
Cr 2p3/2 Cr(OH)3 577.40  Click
Cr 2p3/2 Cr(OH)3 577.40  Click
Cr 2p3/2 [Cr(SCN)6(P(C6H5)4)3] 577.40  Click
Cr 2p3/2 CrVO4.4H2O 577.40  Click
Cr 2p3/2 ZrP2.3Cr4.4O23.7 577.40  Click
Cr 2p3/2 H2V10.5Cr1.5O31.nH2O 577.40  Click
Cr 2p3/2 H2V9.5Cr2.5O31.nH2O 577.40  Click
Cr 2p3/2 H2V8.5Cr3.5O31.nH2O 577.40  Click
Cr 2p3/2 Sn[Cr3(OH)6(CH3COO)(OH2)6]0.8H0.4(PO4)2.H2O 577.40  Click
Cr 2p3/2 H2V12-xCrxO31-y.nH2O 577.40  Click
Cr 2p3/2 B6Cr14Fe32Ni36P12Ox 577.50  Click
Cr 2p3/2 CrCl3.6H2O 577.50  Click
Cr 2p3/2 CrCl3.6H2O 577.50  Click
Cr 2p3/2 H2V11.0Cr1.0O31.nH2O 577.50  Click
Cr 2p3/2 H2V8.0Cr4.0O31.nH2O 577.50  Click
Cr 2p3/2 H2V7.5Cr4.5O31.nH2O 577.50  Click
Cr 2p3/2 CrCl3.6H2O 577.50  Click
Cr 2p3/2 [Cr(CO)6] 577.60  Click
Cr 2p3/2 CrPS4 577.60  Click
Cr 2p3/2 H2V11.25Cr0.75O31.nH2O 577.60  Click
Cr 2p3/2 H2V6.0Cr6.0O31.nH2O 577.60  Click
Cr 2p3/2 H2V5.0Cr7.0O31.nH2O 577.60  Click
Cr 2p3/2 H2V7.0Cr5.0O31.nH2O 577.60  Click
Cr 2p3/2 H2V3.0Cr9.0O31.nH2O 577.60  Click
Cr 2p3/2 [Cr(CH3C(O)CHC(O)CH3)3] 577.70  Click
Cr 2p3/2 (Li2O)50.5(P2O5)30.4(Cr2O3)19.1 577.70  Click
Cr 2p3/2 CrCl3 577.70  Click
Cr 2p3/2 CrPO4 577.78  Click
Cr 2p3/2 CrPO4 577.78  Click
Cr 2p3/2 CrCl3 577.80  Click
Cr 2p3/2 [Cr(CH3C(O)CHC(O)CH3)3] 577.90  Click
Cr 2p3/2 Na4CrO4 577.90  Click
Cr 2p3/2 CrBO3 577.95  Click
Cr 2p3/2 CrBO3 577.95  Click
Cr 2p3/2 (Li2O)40.2(P2O5)35.3(Cr2O3)24.6 578.00  Click
Cr 2p3/2 H2V11.5Cr0.5O31.nH2O 578.00  Click
Cr 2p3/2 CrF2 578.10  Click
Cr 2p3/2 (Li2O)60.4(P2O5)32.0(Cr2O3)7.6 578.20  Click
Cr 2p3/2 (Li2O)51.1(P2O5)36.9(Cr2O3)12.0 578.20  Click
Cr 2p3/2 CrO3 578.30  Click
Cr 2p3/2 CrO3 578.30  Click
Cr 2p3/2 CrPO4 578.30  Click
Cr 2p3/2 (Li2O)49.5(P2O5)45.5(Cr2O3)5.0 578.30  Click
Cr 2p3/2 H2V11.75Cr0.25O31-y.nH2O 578.40  Click
Cr 2p3/2 H2V11.75Cr0.25O31.nH2O 578.40  Click
Cr 2p3/2 (Li2O)40.1(P2O5)41.9(Cr2O3)18.0 578.40  Click
Cr 2p3/2 (Li2O)58.8(P2O5)37.1(Cr2O3)4.2 578.40  Click
Cr 2p3/2 (Li2O)51.0(P2O5)39.4(Cr2O3)9.7 578.40  Click
Cr 2p3/2 (Li2O)41.3(P2O5)53.1(Cr2O3)5.6 578.40  Click
Cr 2p3/2 Cr(NH3)6Cl3 578.50  Click
Cr 2p3/2 Na3CrO4 578.50  Click
Cr 2p3/2 CrO3 578.50  Click
Cr 2p3/2 (Li2O)40.5(P2O5)47.4(Cr2O3)12.1 578.50  Click
Cr 2p3/2 Cr2(SO4)3.15H2O 578.60  Click
Cr 2p3/2 Cr2(SO4).15H2O 578.60  Click
Cr 2p3/2 Cr2SO4.15H2O 578.60  Click
Cr 2p3/2 BaCrO4 578.80  Click
Cr 2p3/2 CrO3 578.90  Click
Cr 2p3/2 CrO3 578.90  Click
Cr 2p3/2 CaCrO4 578.90  Click
Cr 2p3/2 CaCrO4 578.90  Click
Cr 2p3/2 H2V4Cr8O31.nH2O 578.90  Click
Cr 2p3/2 H2V11.5Cr0.5O31.nH2O 578.90  Click
Cr 2p3/2 H2V10Cr2O31.nH2O 578.90  Click
Cr 2p3/2 H2V8Cr4O31.nH2O 578.90  Click
Cr 2p3/2 H2V6Cr6O31.nH2O 578.90  Click
Cr 2p3/2 CrF2 579.00  Click
Cr 2p3/2 CrF3 579.10  Click
Cr 2p3/2 CrF3 579.10  Click
Cr 2p3/2 CrO3 579.10  Click
Cr 2p3/2 CrO3 579.10  Click
Cr 2p3/2 BaCrO4 579.10  Click
Cr 2p3/2 CrF3 579.20  Click
Cr 2p3/2 CrF3 579.20  Click
Cr 2p3/2 CuOH.NH4.CrO4 579.20  Click
Cr 2p3/2 CrF3 579.40  Click
Cr 2p3/2 CrF3 579.40  Click
Cr 2p3/2 K2Cr2O7 579.40  Click
Cr 2p3/2 K2Cr2O7 579.40  Click
Cr 2p3/2 Na2Cr2O7 579.40  Click
Cr 2p3/2 Na2Cr2O7 579.40  Click
Cr 2p3/2 CuCrO4.2Cu(OH)2 579.40  Click
Cr 2p3/2 (NH4)3[CrF6] 579.50  Click
Cr 2p3/2 Cs2Cr2O7 579.50  Click
Cr 2p3/2 H2V5.0Cr7.0O31.nH2O 579.50  Click
Cr 2p3/2 La0.8Sr0.2CrO3 579.50  Click
Cr 2p3/2 Mg0.1(Cr2O3)0.9 579.50  Click
Cr 2p3/2 CrO3 579.60  Click
Cr 2p3/2 CrO3 579.60  Click
Cr 2p3/2 K2Cr2O7 579.60  Click
Cr 2p3/2 H2V6.0Cr6.0O31.nH2O 579.60  Click
Cr 2p3/2 H2V7.0Cr5.0O31.nH2O 579.60  Click
Cr 2p3/2 H2V3.0Cr9.0O31.nH2O 579.60  Click
Cr 2p3/2 K2CrO4 579.70  Click
Cr 2p3/2 CrO3 579.70  Click
Cr 2p3/2 Cr2(CrO4)3 579.70  Click
Cr 2p3/2 CrF3 579.80  Click
Cr 2p3/2 CrF3 579.80  Click
Cr 2p3/2 CrF3 579.80  Click
Cr 2p3/2 CrF3 579.80  Click
Cr 2p3/2 Li2CrO4 579.80  Click
Cr 2p3/2 Li2CrO4 579.80  Click
Cr 2p3/2 CrO3 579.80  Click
Cr 2p3/2 CrO3 579.80  Click
Cr 2p3/2 Cs2CrO4 579.80  Click
Cr 2p3/2 Na2CrO4 579.80  Click
Cr 2p3/2 K2Cr2O7 579.80  Click
Cr 2p3/2 Na2Cr2O7 579.80  Click
Cr 2p3/2 Na2CrO4 579.80  Click
Cr 2p3/2 [CrCl3(H2NC(O)NH2)6] 579.90  Click
Cr 2p3/2 K2Cr2O7 579.90  Click
Cr 2p3/2 CrF3 580.10  Click
Cr 2p3/2 CrF3 580.10  Click
Cr 2p3/2 CrF3 580.10  Click
Cr 2p3/2 CrF3 580.10  Click
Cr 2p3/2 CrO3 580.10  Click
Cr 2p3/2 CrO3 580.10  Click
Cr 2p3/2 Cr2O3 580.10  Click
Cr 2p3/2 K2Cr2O7 580.10  Click
Cr 2p3/2 CrF3 580.30  Click
Cr 2p3/2 CrF3 580.30  Click
Cr 2p3/2 Na2CrO4 580.50  Click
Cr 2p3/2 K3CrF6 583.00  Click

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions  

for XPS Research Studies on Chromium Materials

 


 

Expert Knowledge Explanations

 Periodic Table 


 

 

Chromium Chemical Compounds

 

Peak-fits and Overlays of Chemical State Spectra

Pure Chromium, Cro:  Cr (2p)
Cu (2p3/2) BE = 932.6 eV
Cr2O3:  Cr (2p)
C (1s) BE = 285.0 eV
CrF3:  Cr (2p)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Cr (2p) Spectra shown Above

C (1s) BE = 285.0 eV

 Chemical Shift between Cr vs Cr2O3: 2.0 eV
 Chemical Shift between Cr vs CrF3:  5.4 eV

 Periodic Table 


 

Native Oxide on Chromium, (Cro)
Naturally Formed in lab air at 25 Co 1 atm 

Survey Spectrum from Native Oxide on Cro
Flood gun is OFF, C (1s) BE = 286.8 eV
Cr (2p) Chemical State Spectrum from Native Oxide on Cro
Flood gun is OFF, C (1s) BE = 286.8 eV

 
O (1s) Chemical State Spectrum from Native Oxide on Cro
Flood gun is OFF, C (1s) BE = 286.8 eV
C (1s) Chemical State Spectrum from Native Oxide on Cro
Flood gun is OFF, C (1s) BE = 286.8 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

 


 

Chromium Oxide (Cr2O3)
exposed bulk of single crystal

Survey Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV
Cr (2p) Chemical State Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV

 
O (1s) Chemical State Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV
C (1s) Chemical State Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV

 
Cr (3p) Chemical State Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV
Freshly cleaved to expose bulk
Cr (3s) Chemical State Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV
Freshly cleaved to expose bulk
3s Multiplet Splitting = 4.0 eV

 
Valence Band Spectrum from Cr2O3
Flood gun is ON, C (1s) BE = 285.0 eV
Freshly cleaved to expose bulk
Auger Signals from Cr2O3
Flood gun is ON
C (1s) BE = 285.0 eV

 

Shake-up Features for
Cr2O3
   

 

Multiplet Splitting Features for
Chromium Compounds
Cro metal – NO Splitting for Cr (3s) Cr2O3 Compound – Multiplet Splitting Peaks for Cr (3s)


 
Cro metal – NO Splitting for Cr (2p3/2) Cr2O3 Compound – Multiplet Splitting Peaks for Cr (2p3/2)

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

 


 

 

Chromium Chemical Compounds

 

   
   
   
   
   
   
   
   
   
   

 Periodic Table 


 

 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 Periodic Table 


 

 

Flood Gun Effect on Native Oxide of Chromium

 

Native Oxide of Chromium Sheet – Sample GROUNDED
versus
Native Oxide of Chromium Sheet – Sample FLOATING

 


Native Oxide of Chromium Sheet – Sample Grounded

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Cr (2p) O (1s) C (1s)
     
 Periodic Table     

 

Native Oxide of Chromium Sheet – Sample Floating

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Cr (2p) O (1s) C (1s)
     
 Periodic Table     

 Peri

 


 

XPS Study of UHV Gas Captured by Freshly Ion Etched Chromium
 
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Cro

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
 
 
Cr (2p) Signal
 O (1s) Signal C (1s) Signal
     
 
 
Copyright ©:  The XPS Library


 

AES Study of UHV Gas Captured by Freshly Ion Etched Chromium

Chromium sheet was ion etched and allowed to react with residual UHV gases in ion pumped AES overnight – ~14 hr run.

Cr (LMM) Signal:
Cr at front -> CrOx at rear
Cr KE = 522.1 eV,    CrOx KE = 522.7 eV
O (KLL) Signal:
Cr at front -> CrOx at rear
O KE = 508eV
   

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

AES Chemical State Spectra from
Slow Depth Profile of Native Cr Oxide

Native Cr Oxide on Cr piece was slowly ion etched using High Energy Resolution conditions to measure Chemical States by Auger

Cr (LMM)
O (KLL)
   
   

 


 

 

Chromium Alloys

 

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 

 

XPS Facts, Guidance & Information

 Periodic Table 

    Element   Chromium (Cr)
 
    Primary XPS peak used for Peak-fitting:   Cr (2p)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for “p” orbital, ΔBE = 9.2 eV
 
    Binding Energy (BE) of Primary XPS Signal:   574.4 eV
 
    Scofield Cross-Section (σ) Value:   Cr (2p3/2) = 7.69       Cr (2p1/2) = 3.98
 
    Conductivity:   Cr resistivity =  
Native Oxide suffers Differential Charing
 
    Range of Cr (2p) Chemical State BEs:   574 – 580 eV range   (Cro to CrF2)  
    Signals from other elements that overlap
Cr (2p) Primary Peak:
  xx (xx)  
    Bulk Plasmons:   ~xx eV above peak max for pure  
    Shake-up Peaks:   xx  
    Multiplet Splitting Peaks:   xx  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Cr (2p)

  • FWHM (eV) of Pure Cro ~0.9 eV using 50 eV Pass Energy after ion etching:
  • FWHM (eV) of Cr2O3 xtal:  ~1.1 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  574.4 eV for Cr (2p3) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Cr (2p):   

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Chromium

  • Chromium develops a thick native oxide due to the reactive nature of clean Chromium .
  • The native oxide of Cr Ox is 1-2 nm thick.
  • Chromium thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Chromium forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal Cr (2p) peak as well as Cr (3p).
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Chromium (Cr)

  • Conductivity:  Chromium readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Cr (2p3) at 574 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  565 – 595 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  560 – 610 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching Cr and various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature

 


 
from Thermo Knowledge Base

Interpretation of XPS spectra

  • In the presence of high concentrations of zinc, it may be difficult to assign chromium chemistry using the Cr2p region, due to strong overlap with the Zn LMM Auger region.
    • The secondary chromium peak, Cr3p, shows reasonably large chemical shifts and may be easier to peak fit in this situation.
    • Binding energies Cr3p peak : metal = 42.4eV, Cr2O3 = 43.0 eV, CrO3 = 48.3 eV
  • Cr2p peak has significantly split spin-orbit components (Δmetal=9.3eV)
  • Direct overlap between Te3d and Cr2p peaks.
    • Although Te3d/Cr2p peaks have strong overlap, Te3d spin-orbit components have a 3:2 intensity ratio compared to a 2:1 ratio for Cr2p.
    • Check for the weaker Te3p peaks, if tellurium concentration is high enough.
  • Method for chemical analysis of Cr (III) oxide[1, 2].
    • A satellite feature of the Cr2p3/2 peak overlaps the Cr2p1/2 component in Cr2O3.
    • Fit only the Cr2p3/2 component.
    • Cr2p for Cr(III) oxide has many multiplet-split components.
  • Correct fitting of multiplet split structure prevents false identification of other chemical states.
  • Native oxide on Cr metal may be a mix of Cr (III) oxide and Cr (III) hydroxide.
      • Cr2p for Cr (III) hydroxide can be fit with a single Cr2p3/2 component.
      • Cr (III) oxide fit with multiplet as shown above and fit Cr metal with asymmetric peak.
    • Air-exposed crocoites (PbCrO4) has been peak fit using a modified version of the Cr2O3 fitting method, with an additional component for the Cr(VI) state.

 
 



End of File