Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                      XPS Database of Polymers                  →Six (6) BE Tables


 

Fluorine (F)

 

Apophyllite – KF Fluorine – F2    (mp -220o C or +53o K) Xenon Tetrafluoride – XeF (mp +117o C)

 

  Page Index
  • Expert Knowledge Explanations


Fluorine (F) in Calcium Fluoride (CaF2)
Peak-fits, BEs, FWHMs, and Peak Labels

 


  .
Calcium Fluoride, CaF2 – Fluorite crystal
F (1s) Spectrum – raw – extended range

as received crystal surface, lightly ion etched
charge referenced so C (1s) = 285.0 eV
Calcium Fluoride, CaF– Fluorite crystal
Peak-fit of F (1s) Spectrum 
as received crystal surface, lightly ion etched
charge referenced so C (1s) = 285.0 eV



Calcium Fluoride, CaF2 – Fluorite crystal
F (KLL) Auger Signal – raw – extended range

as received crystal surface, lightly ion etched
charge referenced so C (1s) = 285.0 eV

Calcium Fluoride, CaF2 – Fluorite crystal
Peak-fit of F (KLL) Auger Signal

as received crystal surface, lightly ion etched
charge referenced so C (1s) = 285.0 eV



Calcium Fluoride, CaF2 – Fluorite crystal
C(1s) Spectrum – peak-fit

as received crystal surface, lightly ion etched

Calcium Fluoride, CaF2 – Fluorite crystal
F (2s) Spectrum – Valence Band region

as received crystal surface, lightly ion etched


Survey Spectrum of Calcium Fluoride (CaF
2)
with Peaks Integrated, Assigned and Labelled

 Periodic Table 

XPS Signals for Fluorine, F

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
Ir (4s) & Sm Auger overlap F (1s) 684-687 4.43 23.0
  F (1s) 687-690 4.43 23.0
Bi (5d), Ta (4f), Sb (4d), & Ge 3d) overlap F (2s) 30 0.210 37.0
   F (2p) 9.5 0.0478 37.5

σ:  abbreviation for the term Scofield Photoionization Cross-Section which is used with IMFP and TF to generate RSFs and atom% quantitation

Energy Loss Peak:  ~17 eV above peak max
Expected Bandgap for LiF: 13-15 eV 

*Scofield Cross-Section (σ) for C (1s) = 1.0

 


 

Energy Loss Peaks from F (1s) in CaF2
freshly exposed surface, lightly ion etched

F (1s) – Extended Range Spectrum F (1s) – Extended Range Spectrum – Vertically Zoomed
   

 

F (KLL) Auger Peaks from CaF2
freshly exposed crystal surface, lightly ion etched

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Side-by-Side Comparison of

Calcium Fluoride (CaF2) and Magnesium Fluoride (MgF2)
Peak-fits, BEs, FWHMs, and Peak Labels

   
CaF2
F (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
MgF2
F (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
 


   
CaF2
F (KLL) Auger spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

MgF2
F (KLL) Auger spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


 Periodic Table 
CaF2
Valence Band
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

MgF2
Valence Band
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 



   
CaF2
C (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

MgF2
C (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


 Periodic Table 


Overlay of Valence Band Spectra
from CaF2 and MgF2
charge referenced so C (1s) = 285.0 eV


 

Survey Spectrum of Calcium Fluoride, CaF2
with Peaks Integrated, Assigned and Labelled


 Periodic Table 

 

Survey Spectrum of Magnesium Fluoride, MgF2
(Optical Coating)
with Peaks Integrated, Assigned and Labelled


 

Survey Spectrum of Beryllium Fluoride, BeF2
(droplet dried in UHV from 33% water solution)
with Peaks Integrated, Assigned and Labelled


 Periodic Table   
BeF2
C (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
CaF2
C (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


  .
BeF2
F (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
CaF2
F (1s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


  .
BeF2
F (2s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
CaF2
F (2s) spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


  .
BeF2
Valence Band spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV
CaF2
Valence Band spectrum
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 Periodic Table 



Overlay of Valence Band Spectra
from CaF2 and BeF2
charge referenced so C (1s) = 285.0 eV

 



 

Fluorine (F) in Organic Polymers


Peak-fits, BEs, FWHMs, and Peak Labels

 


Teflon (-CF2-CF2-)n
Poly-Tetrafluoroethylene (PTFE)
  .
Teflon™ – Tetrafluoroethylene,  (-CF2-CF2-)n  Polymer
F (1s) Spectrum – raw

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV
Teflon™ – Tetrafluoroethylene,  (-CF2-CF2-)n  Polymer
F (1s) Spectrum – peak-fit

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV


  .
Teflon™ – Tetrafluoroethylene,  (-CF2-CF2-)n  Polymer
C (1s) Spectrum – raw 

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV
Teflon™ – Tetrafluoroethylene,  (-CF2-CF2-)n  Polymer
C (1s) Spectrum – peak-fit

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV


 Periodic Table   
Teflon™ – Tetrafluoroethylene,  (-CF2-CF2-)n  Polymer
Valence Band Spectrum 

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV
Teflon™ – Tetrafluoroethylene,  (-CF2-CF2-)n  Polymer
F (KLL) Auger Spectrum 

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV

 

Survey Spectrum of Poly-tetrafluoro-ethylene, (PTFE)
Teflon (-CF2-CF2-)n

with Peaks Integrated, Assigned and Labelled


 
Kynar™ (-CF2-CH2-)n
Poly-vinylidene difluoride (PVdF)

  .
Kynar™ – Poly-vinylidene difluoride, (-CF2-CH2-)n  Polymer
F (1s) Spectrum – raw – extended range

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV
Kynar™ – Poly-vinylidene difluoride, (-CF2-CH2-) Polymer
F (1s) Spectrum – peak-fit

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV


Kynar™ – Poly-vinylidene difluoride, (-CF2-CH2-)n  Polymer
C (1s) Spectrum – raw – extended range

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV
Kynar™ – Poly-vinylidene difluoride,  (-CF2-CH2-)n  Polymer
C (1s) Spectrum – peak-fit

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV


Kynar™ – Poly-vinylidene difluoride, (-CF2-CH2-)n  Polymer
Valence Band Spectrum 

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV
Kynar™ – Poly-vinylidene difluoride, (-CF2-CH2-)n  Polymer
F (KLL) Auger Spectrum 

Freshly exposed bulk using clean razor blade
charge referenced so C (1s) = 285.0 eV

 Periodic Table 
Survey Spectrum of Poly-vinylidene difluoride (PVdF)
Kynar™ (-CF2-CH2-)
n
with Peaks Integrated, Assigned and Labelled

 

Overlays of
Teflon and Kynar Spectra 

charge referenced so C (1s) = 285.0 eV

F (1s) Overlay C (1s) Overlay

 


 

Valence Band Overlay F (KLL) Overlay
   

Copyright ©:  The XPS Library 

 Periodic Table 



 

Metal Fluoride Minerals, Crystals, and Chemical Compounds

 

CrF3 – Sputtering Target Man-Made Optical Crystal – MgF2 Cryolite – Na3AlF6 Nickel Fluoride – NiF2

 



 

 

Six (6) Chemical State Tables of F (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.
  •  

 Periodic Table 


Table #1

F (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or
NIST Average BE
Largest BE Hydrocarbon C (1s) BE  Source
F 9 F-CuF 684.0 eV   285.0 eV The XPS Library
F 9 F-metals 684.0 eV 687.4 eV 285.0 eV The XPS Library
F 9 F-Li 685.0 eV 685.2 eV 285.0 eV The XPS Library
F 9 F-BeF 685.1 eV   285.0 eV The XPS Library
F 9 F-TiF2 685.4 eV   285.0 eV The XPS Library
F 9 F-CaF 685.6 eV   285.0 eV The XPS Library
F 9 F-MgF 686.6 eV   285.0 eV The XPS Library
F 9 F-CH 686.8 eV 688.0 eV 285.0 eV The XPS Library
F 9 F-AlF2 687.4 eV   285.0 eV The XPS Library
F 9 F-CF2-CH2- 688.4 eV   285.0 eV The XPS Library
F 9 F-CF2-O 689.0 eV 689.2 eV 285.0 eV The XPS Library
F 9 F-CF-CF2 689.3 eV   285.0 eV The XPS Library

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale Calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

F (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

F (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy F(1s) / eV
Metal fluorides 684-685.5
Organic fluorine 688-689

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

F (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

F (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
F 1s BaF2 684.0 ±0.7 683.3 684.6
F 1s KF 684.1 ±0.3 683.8 684.4
F 1s NaF 684.2 ±0.5 683.7 684.6
F 1s LiF 685.1 ±0.3 684.8 685.3
F 1s MgF2 685.8 ±0.3 685.5 686.0
F 1s Ph3PBF3 685.8 ±0.3 685.5 686.0
F 1s AlF3・3H2O 686.3 ±0.3 686.0 686.5
F 1s Na2SiF6 686.4 ±0.2 686.2 686.6
F 1s EtNH2BF3 686.6 ±0.3 686.3 686.8
F 1s NaBF4 687.0 ±0.3 686.7 687.3
F 1s p-(CF2=CF2) 688.9 ±0.3 688.6 689.2

 Periodic Table 



 

Histograms of NIST BEs for F (1s) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  684.1 eV for F- in MF based on 20 literature BEs Histogram indicates:  684.8 eV for F- in MF2 based on 40 literature BEs

Histogram indicates:  685.3 eV for F- in MF3 based on 16 literature BEs

 

 

Table #6


NIST Database of F (1s) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
F 1s CsF 682.40  Click
F 1s AgF 682.70  Click
F 1s KF 682.78  Click
F 1s AgF 682.80  Click
F 1s AgF 682.80  Click
F 1s RbF 682.90  Click
F 1s Na2SbF5 683.40  Click
F 1s PbF2 683.60  Click
F 1s CsSbF4 683.60  Click
F 1s RbF 683.60  Click
F 1s BaF2 683.70  Click
F 1s PbF2 683.70  Click
F 1s NaF 683.70  Click
F 1s BaF2 683.73  Click
F 1s KF 683.80  Click
F 1s K2SbF5 683.90  Click
F 1s KF 683.90  Click
F 1s K3FeF6 684.00  Click
F 1s BaF2 684.20  Click
F 1s CdF2 684.20  Click
F 1s SrF2 684.22  Click
F 1s SrF2 684.22  Click
F 1s NaF 684.27  Click
F 1s BaF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s CuF2 684.30  Click
F 1s K3ZrF7 684.30  Click
F 1s KSb2F7 684.30  Click
F 1s CdF2 684.40  Click
F 1s KF 684.40  Click
F 1s NiF2 684.50  Click
F 1s SrF2 684.50  Click
F 1s SrF2 684.50  Click
F 1s ZnF2 684.50  Click
F 1s LaF3 684.50  Click
F 1s NaF 684.50  Click
F 1s NaF 684.50  Click
F 1s NaF 684.50  Click
F 1s CdF2 684.60  Click
F 1s PrF3 684.60  Click
F 1s SmF3 684.60  Click
F 1s K2ZrF6 684.60  Click
F 1s K2ZrF6 684.60  Click
F 1s Ca10(PO4)6F2 684.60  Click
F 1s UO2F2 684.60  Click
F 1s CaF2 684.63  Click
F 1s [N(C2H5)4][SbF6] 684.70  Click
F 1s CrF2 684.70  Click
F 1s CuF2 684.70  Click
F 1s CuF2 684.70  Click
F 1s UF4 684.70  Click
F 1s K2UF6 684.70  Click
F 1s NiF2.4H2O 684.70  Click
F 1s Cs2[WF4O2] 684.70  Click
F 1s Cs2[MoF4O2] 684.70  Click
F 1s GdF3 684.77  Click
F 1s LiF 684.79  Click
F 1s CaF2 684.80  Click
F 1s CaF2 684.80  Click
F 1s CdF2 684.80  Click
F 1s CuF2 684.80  Click
F 1s CuF2 684.80  Click
F 1s MnF2 684.80  Click
F 1s SnF2 684.80  Click
F 1s SrF2 684.80  Click
F 1s SrF2 684.80  Click
F 1s ZnF2 684.80  Click
F 1s NdF3 684.80  Click
F 1s UF4 684.80  Click
F 1s UF4 684.80  Click
F 1s UF5 684.80  Click
F 1s KZrF5.H2O 684.80  Click
F 1s CaF2 684.90  Click
F 1s CdF2 684.90  Click
F 1s FeF2 684.90  Click
F 1s ThF4 684.90  Click
F 1s K2TiF6 684.90  Click
F 1s SrF2 684.90  Click
F 1s MnF2 685.00  Click
F 1s NiF2 685.00  Click
F 1s SrF2 685.00  Click
F 1s SrF2 685.00  Click
F 1s FeF3 685.00  Click
F 1s GdF3 685.00  Click
F 1s K2TiF6 685.00  Click
F 1s Na2ZrF6 685.00  Click
F 1s LiF 685.00  Click
F 1s LiF 685.00  Click
F 1s PrOF 685.00  Click
F 1s Si0.284Zr0.031O0.657F0.028 685.00  Click
F 1s NiF2 685.10  Click
F 1s ZnF2 685.10  Click
F 1s CrF3 685.10  Click
F 1s CrF3 685.10  Click
F 1s ZrF4 685.10  Click
F 1s ZrF4 685.10  Click
F 1s NaSbF6 685.10  Click
F 1s K2TaF7 685.10  Click
F 1s K2SnF6.H2O 685.10  Click
F 1s LiF 685.10  Click
F 1s NdOF 685.10  Click
F 1s Na2BeF4 685.20  Click
F 1s InF3 685.20  Click
F 1s SnF4 685.20  Click
F 1s K2GeF6 685.20  Click
F 1s NaTaF6 685.20  Click
F 1s K2NbF7 685.20  Click
F 1s K2TaF7 685.20  Click
F 1s GaF3.3H2O 685.20  Click
F 1s LaOF 685.20  Click
F 1s Zr0.332O0.639F0.021 685.20  Click
F 1s Si0.322Zr0.005O0.655F0.019 685.20  Click
F 1s LaF3 685.30  Click
F 1s NaSnF3 685.30  Click
F 1s UF3 685.30  Click
F 1s YF3 685.30  Click
F 1s Na2TiF6 685.30  Click
F 1s GaF3.3H2O 685.30  Click
F 1s InF3.3H2O 685.30  Click
F 1s InF3.3H2O 685.30  Click
F 1s EuOF 685.30  Click
F 1s Si0.316Zr0.013O0.664F0.008 685.30  Click
F 1s Si0.057Zr0.269O0.597F0.078 685.30  Click
F 1s MgF2 685.40  Click
F 1s CrF3 685.40  Click
F 1s CrF3 685.40  Click
F 1s HfF4 685.40  Click
F 1s UF4 685.40  Click
F 1s K2NbF7 685.40  Click
F 1s Si0.284Zr0.042O0.656F0.017 685.40  Click
F 1s Si0.255Zr0.061O0.675F0.008 685.40  Click
F 1s Si0.294Zr0.029O0.670F0.006 685.40  Click
F 1s Si0.255Zr0.072O0.665F0.008 685.40  Click
F 1s CrF3 685.50  Click
F 1s CrF3 685.50  Click
F 1s Na3AlF6 685.50  Click
F 1s Na3TaF8 685.50  Click
F 1s YOF 685.50  Click
F 1s Zr0.339O0.555F0.106 685.50  Click
F 1s Si0.251Zr0.074O0.651F0.025 685.50  Click
F 1s Si0.314Zr0.012O0.655F0.019 685.50  Click
F 1s MgF2 685.52  Click
F 1s C5H5N.BF3 685.60  Click
F 1s CrF3 685.60  Click
F 1s CrF3 685.60  Click
F 1s Na2TaF7 685.60  Click
F 1s [Pt2(NCCH3)6].(BF4)2 685.60  Click
F 1s UO2F2 685.60  Click
F 1s Si0.277Zr0.043O0.642F0.038 685.60  Click
F 1s MgF2 685.70  Click
F 1s NaBeF3 685.70  Click
F 1s K3RhF6 685.70  Click
F 1s [(P(C6H5)3)].BF3 685.70  Click
F 1s Si0.300Zr0.028O0.640F0.032 685.70  Click
F 1s MgF2 685.75  Click
F 1s BeF2 685.80  Click
F 1s [BF3(PO(C6H5)3)] 685.80  Click
F 1s BeF2 685.90  Click
F 1s CuF2 685.90  Click
F 1s CuF2 685.90  Click
F 1s ZrF4 685.90  Click
F 1s ZrF4 685.90  Click
F 1s Na2GeF6 685.90  Click
F 1s CsF 685.90  Click
F 1s (CH3C5H3NCH3).BF3 685.90  Click
F 1s LiF 685.90  Click
F 1s [IrCl(CO)(C2F4)(P(C6H5)3)2] 686.00  Click
F 1s HgF2 686.00  Click
F 1s Na2SiF6 686.00  Click
F 1s [Pt(C2F4)(P(C6H5)3)2] 686.10  Click
F 1s MnF2 686.10  Click
F 1s [Cu(NH2CSNH2)3].BF4 686.20  Click
F 1s AlF3.3H2O 686.30  Click
F 1s AlF3.3H2O 686.30  Click
F 1s Na2SiF6 686.40  Click
F 1s [PF(OC2H5)2] 686.40  Click
F 1s [RuCl(NO)2(P(C6H5)3)2].BF4 686.40  Click
F 1s KMgF3 686.50  Click
F 1s LiF 686.50  Click
F 1s KSbF6 686.60  Click
F 1s K2SiF6 686.60  Click
F 1s (NH3).BF3 686.60  Click
F 1s (C2H5NH2).BF3 686.60  Click
F 1s YbF3 686.70  Click
F 1s [RuCl(CH3C6H4NN)2(P(C6H5)3)2].BF4 686.70  Click
F 1s Si0.284Zr0.031O0.657F0.028 686.80  Click
F 1s [RhCl(C2F4)(P(C6H5)3)2] 686.90  Click
F 1s (-CHFCH2-)n 686.94  Click
F 1s CH3CN.BF3 687.00  Click
F 1s NaBF4 687.00  Click
F 1s (-CH2CHCl-)1.5n(-CClFCF2-)n 687.00  Click
F 1s AlF2.3(OH)0.7.H2O 687.00  Click
F 1s Cl,F in (ONO2)CHC(CH2ONO2)2CH(ONO2) 687.10  Click
F 1s (-CH2CHCl-)1.5n(-CClFCF2-)n 687.20  Click
F 1s [OP(C6H4F)3] 687.30  Click
F 1s [P(C6H4F)3] 687.40  Click
F 1s Cl,F in (ONO2)CHC(CH2ONO2)2CH(ONO2) 687.40  Click
F 1s Cl,F in (ONO2)CHC(CH2ONO2)2CH(ONO2) 687.40  Click
F 1s Si0.255Zr0.072O0.665F0.008 687.40  Click
F 1s AlF3 687.50  Click
F 1s Si0.284Zr0.042O0.656F0.017 687.50  Click
F 1s Si0.294Zr0.029O0.670F0.006 687.50  Click
F 1s Si0.251Zr0.074O0.651F0.025 687.50  Click
F 1s Si0.277Zr0.043O0.642F0.038 687.50  Click
F 1s Si0.314Zr0.012O0.655F0.019 687.50  Click
F 1s Si0.322Zr0.005O0.655F0.019 687.50  Click
F 1s K2NiF6 687.60  Click
F 1s Si0.300Zr0.028O0.640F0.032 687.60  Click
F 1s [Au9(P(C6H5)3)8](PF6)3 687.65  Click
F 1s -NHC(O)NHC(O)C(F)CH- 687.70  Click
F 1s Si0.334O0.649F0.017 687.70  Click
F 1s Si0.316Zr0.013O0.664F0.008 687.70  Click
F 1s Si0.255Zr0.061O0.675F0.008 687.70  Click
F 1s Si0.328Zr0.001O0.665F0.007 687.70  Click
F 1s AlF3 687.80  Click
F 1s AlF3 687.80  Click
F 1s Si0.334O0.661F0.005 687.80  Click
F 1s Si0.057Zr0.269O0.597F0.078 687.90  Click
F 1s [Au8(P(C6H5)3)8](PF6)2 687.95  Click
F 1s (-CF2CH2-)n 688.15  Click
F 1s (-CH2-CF2-)n 688.15  Click
F 1s (-CH2CH(OC(O)CF3)-)n 688.16  Click
F 1s SF6 688.20  Click
F 1s (-CH2CH(C(O)OCH2CF3)-)n 688.20  Click
F 1s [Ni(CF3COO)2] 688.40  Click
F 1s (-CH2CH(C(O)OCH2(CF2)4CF(CF3)CF3)-CH2CH(C(O)OCH2(CF2)7F)-)n 688.50  Click
F 1s (-CF(CF3)CF2-)x(-CF2CH2-)y 688.80  Click
F 1s (-CH2C(CH3)(C(O)OCH2(CF2)4CF(CF3)CF3)-CH2C(CH3)(C(O)OCH2(CF2)7F)-)n 688.80  Click
F 1s (-CH2CH(C(O)OCH2CH2(CF2)mCF3-)n 688.80  Click
F 1s CF2 689.00  Click
F 1s CF3[(-OCF(CF3)C-F2)n(-OC-F2)m]xOCF3 689.08  Click
F 1s (-CHFCHF-)n 689.10  Click
F 1s (-CHFCH2-)n 689.10  Click
F 1s SF6/O2/Ni 689.20  Click
F 1s (-CF2CH2-)n 689.40  Click
F 1s (-CH2-CF2-)n 689.40  Click
F 1s (-CF2-CF2-)n 689.40  Click
F 1s (-CF2CF2-)n 689.40  Click
F 1s SF6/O2/Ni 689.40  Click
F 1s SF6/Ni 689.40  Click
F 1s [W(CO)2(C5H5)(F3CC6H4C(N)C6H4CF3)] 689.50  Click
F 1s C6H5F 689.60  Click
F 1s C6H5F 689.60  Click
F 1s SF6/Ni 689.65  Click
F 1s (-CF2-CF2-)n 689.67  Click
F 1s (-CF2CF2-)n 689.67  Click
F 1s C6H4F2 689.80  Click
F 1s Xe/teflon 689.90  Click
F 1s C2HF3 689.90  Click
F 1s (-CF2-CF2-)n 690.00  Click
F 1s (-CF2CF2-)n 690.00  Click
F 1s SF6/O2/Ni 690.00  Click
F 1s (-CF2-CF2-)n 690.10  Click
F 1s (-CF2CF2-)n 690.10  Click
F 1s SF6/Ni 690.25  Click
F 1s (-CF2-CF2-)n 690.30  Click
F 1s (-CF2CF2-)n 690.30  Click
F 1s C6HF5 690.70  Click
F 1s C6H5CF3 690.80  Click
F 1s C6F6 690.90  Click
F 1s SF6 692.70  Click
F 1s SF6 693.50  Click
F 1s [NF4][BF4] 694.20  Click
F 1s [PF2N]5 694.54  Click
 

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies on Fluorine Containing Materials

 


 

Expert Knowledge Explanations

 


 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 Periodic Table 

Copyright ©:  The XPS Library 

 

XPS Facts, Guidance & Information

 Periodic Table 

    Element   Fluorine (F)
 
    Primary XPS peak used for Peak-fitting :   F (1s)  
    Spin-Orbit (S-O) splitting for Primary Peak:   NO Spin-Orbit splitting for “s” orbital
 
    Binding Energy (BE) of Primary XPS Signal:   685 eV
 
    Scofield Cross-Section (σ) Value:   F (1s) = 4.43
 
    Conductivity:      
    Range of F (1s) Chemical State BEs:   684 – 692 eV range   (F- to -CF3)  
    Signals from other elements that overlap
F (1s) Primary Peak:
     
    Bulk Plasmons:   ~17 eV above peak max for pure  
    Shake-up Peaks:   ??  
    Multiplet Splitting Peaks:   not possible  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 



 

Information Useful for Peak-fitting F (1s)

  • FWHM (eV) for F (1s) in Metal F- xtals:  ~1.2 eV for F (1s) using 50 eV Pass Energy after ion etching:
  • FWHM (eV) for F (1s) in Metal F- powders:  ~2.0 eV for F (1s) using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  684-692 eV for F (1s) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for F (1s):  xx

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Fluorine

  • METAL Fluoride thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • METAL Fluoride forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal F (1s) peak as well as F Auger
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Fluorine (F)

  • Conductivity:  METAL Fluoride readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  F (1s) at 49.6 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  40 – 60 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  40 – 100 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching F and various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature
 



End of File