Iro Native IrOx IrO2 IrMn IrI4 IrCl3 Basic 

XPS Spectra
Iridium (Ir) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Iridium native oxide  (IrOx – Iro at 300 C for 14 hrs)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from IrOx
Freshly exposed bulk, Flood gun is OFF, sample is conductive, Ag (3d5/2) FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
Ir (4f) Spectrum from IrOx Raw
Fresh exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
Ir (4f) Spectrum from IrOx Peak-Fit
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV



 
Ir (4f) Spectrum from IrOx Extended Range
Fresh exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
Ir (4f) Spectrum from IrOx Raw – Vertically Expanded
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
 

 Periodic Table  → Six (6) BE Tables
O (1s) Spectrum from IrOx Raw
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
O (1s) Spectrum from IrOx Peak-Fit
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from IrOx Raw
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
C (1s) Spectrum from IrOx Peak-Fit
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
O (KLL) Auger Signals from IrOx Raw
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
Valence Band Signals from IrOx Raw
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
na

 
Overlays
 Periodic Table  → Six (6) BE Tables
Valence Band SpectraOverlay of Iro and IrOx
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV
Ir (4f) SpectraOverlay of Iro and IrOx
Freshly exposed bulk, Flood gun is OFF, C (1s) BE = 284.3 eV, Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Sc), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 120, 140, 160, 180 and 200 eV


End-of-Transmission-Function-Tests

 



Six (6) Chemical State Tables of Ir (4f7/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears between 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Ir (4f7/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Ir 77 Ir  – element 60.8 eV 285.0 eV The XPS Library
Ir 77 Ir (N*10) 60.3 eV 60.9 eV 284.8 eV Avg BE – NIST
Ir 77 Ir-Si (N*1) 60.7 eV 284.8 eV Avg BE – NIST
Ir 77 IrO2 (N*3) 61.1 eV 62.0 eV 284.8 eV Avg BE – NIST
Ir 77 Ir-Ox (N*3) 61.3 eV 62.4 eV 284.8 eV Avg BE – NIST
Ir 77 Ir-Si3 (N*1) 61.4 eV 284.8 eV Avg BE – NIST
Ir 77 Ir-O2 61.6 eV 285.0 eV The XPS Library
Ir 77 Ir-Cl3 (N*1) 62.7 eV 284.8 eV Avg BE – NIST

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Ir (4f7/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Ir (4f7/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Ir (4f7/2)
Ir metal 60.9

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Ir (4f7/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Ir (4f7/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift / Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Ir 4f7/2 Ir 60.8 ±0.3 60.5 61.0
Ir 4f7/2 K3IrBr6 61.7 ±0.3 61.4 62.0
Ir 4f7/2 K3IrCl6 62.5 ±0.2 62.3 62.7
Ir 4f7/2 K2IrBr6 62.7 ±0.3 62.4 62.9
Ir 4f7/2 KIr2(CO)4Cl4 62.7 ±0.3 62.4 63.0
Ir 4f7/2 IrCl3 62.8 ±0.3 62.5 63.0
Ir 4f7/2 (NH4)3IrCl6 63.0 ±0.3 62.7 63.3
Ir 4f7/2 K2Ir2(CO)4Cl5 63.0 ±0.3 62.7 63.3
Ir 4f7/2 K2IrCl6 63.3 ±0.3 63.0 63.6
Ir 4f7/2 (NH4)2IrCl6 63.7 ±0.3 63.4 64.0
Ir 4f7/2 KIrCl5NO 65.0 ±0.3 64.7 65.3

 

 Periodic Table 



 


Histograms of NIST BEs for Ir (4f7/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  60.8 eV for Iro based on 10 literature BEs Histogram indicates:  xxx eV for IrO2 based on xx literature BEs

Table #6


NIST Database of Ir (4f7/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Ir 4f7/2 Ir 60.30  Click
Ir 4f7/2 [IrCl(N2)(P(C6H5)3)2] 60.70  Click
Ir 4f7/2 Ir 60.70  Click
Ir 4f7/2 Ir/Co 60.70  Click
Ir 4f7/2 IrSi 60.70  Click
Ir 4f7/2 Ir 60.75  Click
Ir 4f7/2 Ir 60.80  Click
Ir 4f7/2 Ir 60.80  Click
Ir 4f7/2 Ir 60.80  Click
Ir 4f7/2 Ir 60.80  Click
Ir 4f7/2 Ir 60.81  Click
Ir 4f7/2 Ir 60.82  Click
Ir 4f7/2 Ir/Si 60.82  Click
Ir 4f7/2 Ir 60.90  Click
Ir 4f7/2 Ir 60.90  Click
Ir 4f7/2 O2/Ir 60.90  Click
Ir 4f7/2 Ir0.8Ru0.2O2 60.90  Click
Ir 4f7/2 Ir 61.00  Click
Ir 4f7/2 Ir0.2Ru0.8O2 61.00  Click
Ir 4f7/2 Ir0.7Ru0.3O2 61.00  Click
Ir 4f7/2 IrO2 61.10  Click
Ir 4f7/2 Ir0.4Ru0.6O2 61.10  Click
Ir 4f7/2 Ir0.6Ru0.4O2 61.10  Click
Ir 4f7/2 Si/Ir 61.12  Click
Ir 4f7/2 IrBrx 61.20  Click
Ir 4f7/2 IrClx 61.20  Click
Ir 4f7/2 IrSi1.6 61.30  Click
Ir 4f7/2 IrIx 61.30  Click
Ir 4f7/2 IrSi3 61.35  Click
Ir 4f7/2 [IrCl3(CH3C6H4NNH)(P(C6H5)3)2] 61.50  Click
Ir 4f7/2 [IrC5(CH3)5Cl2]2 61.50  Click
Ir 4f7/2 IrBrx 61.50  Click
Ir 4f7/2 (C6H4S4)IrCl4.CH3OH 61.60  Click
Ir 4f7/2 IrO2 61.70  Click
Ir 4f7/2 K3[Ir(CN)6] 61.80  Click
Ir 4f7/2 K3IrBr6 61.80  Click
Ir 4f7/2 Ti[Ir(CN)6] 61.90  Click
Ir 4f7/2 IrCl3((CH3)2NC6H4NO)2 61.90  Click
Ir 4f7/2 IrBrx 61.90  Click
Ir 4f7/2 IrClx 61.90  Click
Ir 4f7/2 IrIx 61.90  Click
Ir 4f7/2 [IrC5(CH3)5MoO4]4 61.90  Click
Ir 4f7/2 IrO2 62.00  Click
Ir 4f7/2 IrO2 62.00  Click
Ir 4f7/2 (IrO2)0.15(SnO2)0.85 62.00  Click
Ir 4f7/2 (IrO2)0.35(SnO2)0.65 62.00  Click
Ir 4f7/2 (IrO2)0.005(SnO2)0.995 62.10  Click
Ir 4f7/2 (IrO2)0.25(SnO2)0.75 62.10  Click
Ir 4f7/2 [IrCl3(P(CH3)2C6H5)3] 62.20  Click
Ir 4f7/2 [IrCl(CO)(C2F4)(P(C6H5)3)2] 62.20  Click
Ir 4f7/2 IrCl4.xH2O 62.20  Click
Ir 4f7/2 (IrO2)0.63(SnO2)0.37 62.20  Click
Ir 4f7/2 IrBrx 62.30  Click
Ir 4f7/2 IrClx 62.30  Click
Ir 4f7/2 IrIx 62.40  Click
Ir 4f7/2 [Ir(NH3)5H2O]Cl3 62.40  Click
Ir 4f7/2 K3[IrCl6] 62.50  Click
Ir 4f7/2 K2IrBr6 62.60  Click
Ir 4f7/2 K[Ir2Cl4(CO)4] 62.70  Click
Ir 4f7/2 IrCl3 62.70  Click
Ir 4f7/2 K2[IrCl6] 62.90  Click
Ir 4f7/2 IrClx 62.90  Click
Ir 4f7/2 Pb2Ir2O6.1 62.90  Click
Ir 4f7/2 IrO2 62.90  Click
Ir 4f7/2 K2[Ir2Cl5(CO)4] 63.00  Click
Ir 4f7/2 K2[IrCl6] 63.00  Click
Ir 4f7/2 (NH4)3[IrCl6] 63.00  Click
Ir 4f7/2 [IrI3(H2NCH2CH2NH2)3] 63.10  Click
Ir 4f7/2 [IrCl3(H2NCH2CH2NH2)3] 63.20  Click
Ir 4f7/2 [IrCl6(NH2CH2CH2NH2)3] 63.20  Click
Ir 4f7/2 [Ir(CO)3Cl] 63.40  Click
Ir 4f7/2 K2[IrCl6] 63.50  Click
Ir 4f7/2 [IrCl4(P(C2H5)3)2] 63.60  Click
Ir 4f7/2 K2[IrCl6] 63.70  Click
Ir 4f7/2 (NH4)2[IrCl6] 63.70  Click
Ir 4f7/2 K[Ir(NO)Cl5] 65.00  Click

 


Statistical Analysis of Binding Energies in NIST XPS Database of BEs