LiBr LiCl LiF LiI LiAlO2 LiB3O5 Li2B4O7 LiBF4 LiGaO2 LiNbO3
Li2CO3 Li2MoO4 Li2SO4 Li2WO4 LiFePO4 Basic

XPS Spectra
Lithium (Li) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Lithium Carbonate  (Li2CO3)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from Li2CO3
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag (3d5/2) FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from Li2CO3 Raw
Fresh exposed bulk, Flood gun is ON, C (1s) BE = 284.65 eV, Ag FWHM = 0.75 eV
C (1s) Spectrum from Li2CO3 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV



 Periodic Table  → Six (6) BE Tables
Li (1s) Spectrum from Li2CO3 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Li (1s) Spectrum from Li2CO3 Peak-fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
O (1s) Spectrum from Li2CO3 Raw 
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
O (1s) Spectrum from Li2CO3 – Peak-fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
O (KLL) Auger Spectrum from Li2CO3 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
O (KLL) Spectrum from Li2CO3 Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
   

 Periodic Table  → Six (6) BE Tables
Valence Band Signals from Li2CO3 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Valence Band Signals from Li2CO3 Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 
Overlays
 Periodic Table  → Six (6) BE Tables
Valence Band SpectraOverlay of Na2CO3 and Li2CO3
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
C (1s) SpectraOverlay of Na2CO3 and Li2CO3
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Cu), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Cu), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Cu), PEs = 100, 120, 140, 160, 180 and 200 eV


 

Six (6) Chemical State Tables of Li (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

 Periodic Table 


Table #1

Li (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE in NIST Hydrocarbon C (1s) BE Source
Li 3 Li – element ~54.7 eV 284.8 eV PHI Handbook
Li 3 Li-OH   (N*1) 54.9 eV 284.8 eV Avg BE – NIST
Li 3 Li2CO3 (N*2) 55.1 eV 55.2 eV 284.8 eV Avg BE – NIST
Li 3 Li2WO4 55.1 eV 285.0 eV The XPS Library
Li 3 Li2CO3 55.2 eV 285.0 eV The XPS Library
Li 3 Li2O 55.4 eV 285.0 eV The XPS Library
Li 3 Li2O (N*1) 55.6 eV 55.8 eV 284.8 eV Avg BE – NIST
Li 3 Li-F (N*3) 55.7 eV 56.7 eV 284.8 eV Avg BE – NIST
Li 3 Li-Cl (N*3) 55.8 eV 56.2 eV 284.8 eV Avg BE – NIST
Li 3 Li2SO4 55.8 eV 285.0 eV The XPS Library
Li 3 Li-F 55.9 eV 285.0 eV The XPS Library
Li 3 Li1B3O5 56.3 eV 285.0 eV The XPS Library
Li 3 Li-Cl 56.6 eV 285.0 eV The XPS Library
Li 3 Li-Br 56.6 eV 285.0 eV The XPS Library
Li 3 Li-I 56.8 eV 285.0 eV The XPS Library
Li 3 LiAlSi2O6 56.8 eV 285.0 eV The XPS Library

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale Calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Li (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Li (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV)
Li (1s)
Li2TiO3 54.7 eV
Li2CO3 55.4 eV
Li2B4O7 55.9 eV
LiF 56.1 eV
LiCl 56.3 eV

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Li (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Li (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

 

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Li 1s Li 54.8 ±0.3 54.5 55.0
Li 1s LiNbO3 55.0 ±0.3 54.7 55.2
Li 1s LiOH 55.0 ±0.2 54.8 55.2
Li 1s Li2CO3 55.2 ±0.3 54.9 55.4
Li 1s Li2O 55.5 ±0.2 55.3 55.7
Li 1s Li3PO4 55.5 ±0.2 55.3 55.7
Li 1s LiF 55.6 ±0.2 55.4 55.8
Li 1s Li4P2O7 55.6 ±0.2 55.4 55.8
Li 1s LiCl 56.0 ±0.3 55.7 56.3
Li 1s LiBr 56.8 ±0.3 56.5 57.0

 Periodic Table 

 



 
 

Histograms of NIST BEs from Li (1s)

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  55.0 eV for Lio based on 5 literature BEs Histogram indicates:  54.5 eV for LiF based on 4 literature BEs

Histogram indicates:  56.0 eV for LiCl based on 3 literature BEs 

Table #6

NIST Database of Li (1s) Binding Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Li 1s LiF 49.90  Click
Li 1s Li0.3Ni0.7O 53.60  Click
Li 1s LiNiO2 53.60  Click
Li 1s (Bi2O3)0.200(LiBO2)0.800 54.40  Click
Li 1s (Li2O)0.5(B2O3)0.494(Bi2O3)0.006 54.50  Click
Li 1s Li 54.60  Click
Li 1s Li/Si 54.70  Click
Li 1s Li/Si 54.70  Click
Li 1s (Li2O)0.5(B2O3)0.496(Bi2O3)0.004 54.70  Click
Li 1s Li 54.80  Click
Li 1s LiNbO3 54.80  Click
Li 1s LiBO2 54.80  Click
Li 1s LiBO2 54.80  Click
Li 1s (Li2O)0.4(B2O3)0.54(Bi2O3)0.06 54.80  Click
Li 1s (Li2O)0.5(B2O3)0.5 54.80  Click
Li 1s LiOH 54.90  Click
Li 1s Li 54.90  Click
Li 1s (Bi2O3)0.150(LiBO2)0.850 54.90  Click
Li 1s Li/Si 54.98  Click
Li 1s Li/Si 54.98  Click
Li 1s Li2WO4 55.00  Click
Li 1s Li2WO4 55.00  Click
Li 1s (Li2O)40(P2O5)24(MoO3)36 55.00  Click
Li 1s (Li2O)40(P2O5)18(MoO3)42 55.00  Click
Li 1s (Bi2O3)0.100(LiBO2)0.900 55.00  Click
Li 1s (Bi2O3)0.050(LiBO2)0.950 55.00  Click
Li 1s (Bi2O3)0.020(LiBO2)0.980 55.00  Click
Li 1s (Bi2O3)0.015(LiBO2)0.985 55.00  Click
Li 1s Li/Si 55.01  Click
Li 1s Li/Si 55.01  Click
Li 1s (Li2O)0.50(B2O3)0.50 55.05  Click
Li 1s Li 55.10  Click
Li 1s Li2WO4 55.10  Click
Li 1s (Li2O)40(P2O5)36(MoO3)24 55.10  Click
Li 1s (Li2O)50(P2O5)30(MoO3)20 55.10  Click
Li 1s (Bi2O3)0.010(LiBO2)0.990 55.10  Click
Li 1s (Bi2O3)0.250(LiBO2)0.750 55.10  Click
Li 1s (Bi2O3)0.002(LiBO2)0.998 55.10  Click
Li 1s (Li2O)0.4(B2O3)0.40(Bi2O3)0.20 55.10  Click
Li 1s (Li2O)0.4(B2O3)0.592(Bi2O3)0.008 55.10  Click
Li 1s (Li2O)0.5(B2O3)0.40(Bi2O3)0.10 55.10  Click
Li 1s Li2CO3 55.12  Click
Li 1s Li2CO3 55.20  Click
Li 1s LiN3 55.20  Click
Li 1s (Li2O)50(P2O5)25(MoO3)25 55.20  Click
Li 1s (Li2O)0.50(P2O5)0.35(WO3)0.15 55.20  Click
Li 1s (Li2O)0.50(P2O5)0.45(WO3)0.05 55.20  Click
Li 1s LiPO3 55.20  Click
Li 1s LiBO2 55.20  Click
Li 1s LiBO2 55.20  Click
Li 1s Li/Si 55.20  Click
Li 1s Li/Si 55.20  Click
Li 1s (Bi2O3)0.025(LiBO2)0.975 55.20  Click
Li 1s (Bi2O3)0.001(LiBO2)0.999 55.20  Click
Li 1s (Bi2O3)0.004(LiBO2)0.996 55.20  Click
Li 1s (Li2O)0.4(B2O3)0.50(Bi2O3)0.10 55.20  Click
Li 1s (Li2O)0.5(B2O3)0.499(Bi2O3)0.001 55.20  Click
Li 1s (Li2O)0.5(B2O3)0.42(Bi2O3)0.08 55.20  Click
Li 1s (Li2O)0.40(B2O3)0.60 55.25  Click
Li 1s (Li2O)40(P2O5)54(MoO3)6 55.30  Click
Li 1s (Li2O)50(P2O5)35(MoO3)15 55.30  Click
Li 1s (Li2O)60(P2O5)36(MoO3)4 55.30  Click
Li 1s (Li2O)0.50(P2O5)0.10(WO3)0.40 55.30  Click
Li 1s (Li2O)41.3(P2O5)53.1(Cr2O3)5.6 55.30  Click
Li 1s (Li2O)(P2O5) 55.30  Click
Li 1s LiNbO3 55.30  Click
Li 1s (F2)0.05((Li2O)0.40(B2O3)0.60)0.95 55.30  Click
Li 1s (F2)0.10((Li2O)0.30(B2O3)0.70)0.90 55.30  Click
Li 1s (Li2O)0.4(B2O3)0.6 55.30  Click
Li 1s Li/Si 55.33  Click
Li 1s Li/Si 55.33  Click
Li 1s Li 55.35  Click
Li 1s O2/Li 55.35  Click
Li 1s (F2)0.10((Li2O)0.50(B2O3)0.50)0.90 55.35  Click
Li 1s Li3PO4 55.40  Click
Li 1s Li4P2O7 55.40  Click
Li 1s Li/CaO 55.40  Click
Li 1s (Li2O)50(P2O5)50 55.40  Click
Li 1s (Li2O)0.50(P2O5)0.05(WO3)0.45 55.40  Click
Li 1s (Li2O)0.50(P2O5)0.50 55.40  Click
Li 1s (Li2O)40(P2O5)30(MoO3)30 55.40  Click
Li 1s (Li2O)50(P2O5)45(MoO3)5 55.40  Click
Li 1s (Li2O)0.50(P2O5)0.40(WO3)0.10 55.40  Click
Li 1s Li/Al 55.40  Click
Li 1s (Li2O)47.3(P2O5)52.7 55.40  Click
Li 1s (Li2O)0.4(B2O3)0.598(Bi2O3)0.002 55.40  Click
Li 1s (F2)0.15((Li2O)0.50(B2O3)0.50)0.85 55.40  Click
Li 1s (LiF)0.40(LiPO3)0.60 55.40  Click
Li 1s (Bi2O3)0.003(LiBO2)0.997 55.40  Click
Li 1s (Bi2O3)0.005(LiBO2)0.995 55.40  Click
Li 1s (Li2O)0.4(B2O3)0.59(Bi2O3)0.01 55.40  Click
Li 1s (Li2O)0.4(B2O3)0.596(Bi2O3)0.004 55.40  Click
Li 1s (Li2O)0.5(B2O3)0.498(Bi2O3)0.002 55.40  Click
Li 1s (Li2O)0.5(B2O3)0.497(Bi2O3)0.003 55.40  Click
Li 1s (Li2O)0.5(B2O3)0.492(Bi2O3)0.008 55.40  Click
Li 1s (Li2O)0.5(B2O3)0.48(Bi2O3)0.02 55.40  Click
Li 1s (Li2O)60(P2O5)40 55.50  Click
Li 1s (Li2O)40(P2O5)42(MoO3)18 55.50  Click
Li 1s (Li2O)50(P2O5)40(MoO3)10 55.50  Click
Li 1s (Li2O)0.50(P2O5)0.15(WO3)0.35 55.50  Click
Li 1s (Li2O)0.50(P2O5)0.20(WO3)0.30 55.50  Click
Li 1s (Li2O)58.8(P2O5)37.1(Cr2O3)4.2 55.50  Click
Li 1s (Li2O)60.4(P2O5)32.0(Cr2O3)7.6 55.50  Click
Li 1s (Li2O)49.5(P2O5)45.5(Cr2O3)5.0 55.50  Click
Li 1s (Li2O)50.5(P2O5)30.4(Cr2O3)19.1 55.50  Click
Li 1s (Li2O)61.7(P2O5)38.3 55.50  Click
Li 1s (LiF)0.18(LiPO3)0.82 55.50  Click
Li 1s (F2)0.30(LiPO3)0.70 55.50  Click
Li 1s (F2)0.40(LiPO3)0.60 55.50  Click
Li 1s (LiF)0.15(LiPO3)0.85 55.50  Click
Li 1s (LiF)0.30(LiPO3)0.70 55.50  Click
Li 1s (LiF)0.35(LiPO3)0.65 55.50  Click
Li 1s (F2)0.20((Li2O)0.30(B2O3)0.70)0.80 55.50  Click
Li 1s (F2)0.20((Li2O)0.50(B2O3)0.50)0.80 55.50  Click
Li 1s (Li2O)0.4(B2O3)0.594(Bi2O3)0.006 55.50  Click
Li 1s (Li2O)0.5(B2O3)0.49(Bi2O3)0.01 55.50  Click
Li 1s (Li2O)0.5(B2O3)0.47(Bi2O3)0.03 55.50  Click
Li 1s (Li2O)0.5(B2O3)0.30(Bi2O3)0.20 55.50  Click
Li 1s Li/Si 55.54  Click
Li 1s Li/Si 55.54  Click
Li 1s (F2)0.25((Li2O)0.30(B2O3)0.70)0.75 55.55  Click
Li 1s (F2)0.05((Li2O)0.50(B2O3)0.50)0.95 55.55  Click
Li 1s (F2)0.10((Li2O)0.40(B2O3)0.60)0.90 55.56  Click
Li 1s Li/Si 55.58  Click
Li 1s Li/Si 55.58  Click
Li 1s Li2O 55.60  Click
Li 1s Li4P2O7 55.60  Click
Li 1s LiCrO2 55.60  Click
Li 1s LiClO4 55.60  Click
Li 1s LiClO4 55.60  Click
Li 1s O2/Li 55.60  Click
Li 1s (Li2O)40(P2O5)60 55.60  Click
Li 1s (Li2O)0.50(P2O5)0.20(WO3)0.30 55.60  Click
Li 1s (Li2O)0.50(P2O5)0.25(WO3)0.25 55.60  Click
Li 1s (Li2O)0.50(P2O5)0.30(WO3)0.20 55.60  Click
Li 1s (Li2O)40.7(P2O5)59.3 55.60  Click
Li 1s (Li2O)40.2(P2O5)35.3(Cr2O3)24.6 55.60  Click
Li 1s (Li2O)51.0(P2O5)39.4(Cr2O3)9.7 55.60  Click
Li 1s (Li2O)51.1(P2O5)36.9(Cr2O3)12.0 55.60  Click
Li 1s (LiF)0.05(LiPO3)0.95 55.60  Click
Li 1s (Li2O)0.30(B2O3)0.70 55.60  Click
Li 1s (F2)0.05((Li2O)0.30(B2O3)0.70)0.95 55.65  Click
Li 1s LiF 55.70  Click
Li 1s LiF 55.70  Click
Li 1s Li/CaO 55.70  Click
Li 1s Li2.74V2O5 55.70  Click
Li 1s O2/Li 55.70  Click
Li 1s (Li2O)40(P2O5)48(MoO3)12 55.70  Click
Li 1s LiB3O5 55.70  Click
Li 1s (Li2O)40.5(P2O5)47.4(Cr2O3)12.1 55.70  Click
Li 1s (Li2O)40.1(P2O5)41.9(Cr2O3)18.0 55.70  Click
Li 1s (F2)0.20(LiPO3)0.80 55.70  Click
Li 1s (F2)0.25(LiPO3)0.75 55.70  Click
Li 1s (F2)0.35(LiPO3)0.65 55.70  Click
Li 1s (LiF)0.10(LiPO3)0.90 55.70  Click
Li 1s (F2)0.30((Li2O)0.30(B2O3)0.70)0.70 55.70  Click
Li 1s Li2SO4 55.75  Click
Li 1s (F2)0.20((Li2O)0.40(B2O3)0.60)0.80 55.75  Click
Li 1s LiCl 55.80  Click
Li 1s LiNO3 55.80  Click
Li 1s (F2)0.15((Li2O)0.30(B2O3)0.70)0.85 55.85  Click
Li 1s (F2)0.15((Li2O)0.40(B2O3)0.60)0.85 55.85  Click
Li 1s O2/Li 55.90  Click
Li 1s (F2)0.25((Li2O)0.40(B2O3)0.60)0.75 55.90  Click
Li 1s Li/CaO 56.00  Click
Li 1s LiCl 56.10  Click
Li 1s Li/Si 56.12  Click
Li 1s Li/Si 56.12  Click
Li 1s Li/Si 56.13  Click
Li 1s Li/Si 56.13  Click
Li 1s Li/Si 56.17  Click
Li 1s Li/Si 56.17  Click
Li 1s LiCl 56.20  Click
Li 1s Li/CaO 56.30  Click
Li 1s LiClO4 56.50  Click
Li 1s LiClO4 56.50  Click
Li 1s Li/Si 56.60  Click
Li 1s Li/Si 56.60  Click
Li 1s Li/Si 56.62  Click
Li 1s Li/Si 56.62  Click
Li 1s Li/Si 56.65  Click
Li 1s Li/Si 56.65  Click
Li 1s LiF 56.70  Click
Li 1s LiBr 56.80  Click
Li 1s LiF 56.80  Click
Li 1s Li/CaO 56.80  Click
Li 1s Li2CrO4 57.10  Click
Li 1s LiC6 57.10  Click
Li 1s LiClO4 57.20  Click
Li 1s LiClO4 57.20  Click

 Periodic Table 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

Five (5) Chemical State Tables of C (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

→  Periodic Table 


Table #1

C (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE      Hydrocarbon           C (1s) BE Source
C 6 range for carbides, C2- 281.5 – 284.2 eV 285.0 eV The XPS Library
C 6 c-SiC 282.9 eV 285.0 eV The XPS Library
C 6 SiCN 284.3 eV The XPS Library
C 6 C-HOPG 284.5 eV 285.0 eV The XPS Library
C 6 C, aromatic, sp2 284.6 eV 284.8 eV 285.0 eV The XPS Library
C 6 C=C 284.7 eV 284.8 eV 285.0 eV The XPS Library
C 6 C-Si 284.8 eV 285.1 eV 285.0 eV The XPS Library
C 6 C-C, C-H 285.0 eV 285.0 eV The XPS Library
C 6 C, diamond, sp3 285.1 eV 285.2 eV 285.0 eV The XPS Library
C 6 C-SOx 285.2 eV 285.8 eV 285.0 eV The XPS Library
C 6 C-N 285.6 eV 286.5 eV 285.0 eV The XPS Library
C 6 C-O-C,C-OH 286.0 eV 286.5 eV 285.0 eV The XPS Library
C 6 C-H2-CF2 286.4 eV 286.8 eV 285.0 eV The XPS Library
C 6 C nitrile 286.7 eV 285.0 eV The XPS Library
C 6 C-Cl 287.0 eV 285.0 eV The XPS Library
C 6 C-HF-CH2 287.3 eV 288.0 eV 285.0 eV The XPS Library
C 6 C=O 287.8 eV 288.0 eV 285.0 eV The XPS Library
C 6 C=N-O 288.0 eV 288.7 eV 285.0 eV The XPS Library
C 6 RbOAc 288.1 eV 285.0 eV The XPS Library
C 6 C-OOR,COOH 288.3 eV 289.2 eV 285.0 eV The XPS Library
C 6 C imide 288.5 eV 288.8 eV 285.0 eV The XPS Library
C 6 BaOAc 288.6 eV 285.0 eV The XPS Library
C 6 C-Cl2 288.6 eV 285.0 eV The XPS Library
C 6 C-O3 (metal) 288.8 eV 290.2 eV 285.0 eV The XPS Library
C 6 HC-O3 (metal) 289.5 eV 291.0 eV 285.0 eV The XPS Library
C 6 C-O3 org 289.5 eV 291.0 eV 285.0 eV The XPS Library
C 6 C-F2-CH2 289.8 eV 291.1 eV 285.0 eV The XPS Library
C 6 C-F2-CF2 291.3 eV 292.0 eV 285.0 eV The XPS Library
C 6 C pi-pi* 291.5 eV 292.1 eV 285.0 eV The XPS Library
C 6 C-F3 293.1 eV 293.8 eV 285.0 eV The XPS Library
C 6 C-F2O 294.1 eV 285.0 eV The XPS Library
C 6 C-F3O 295.2 eV 285.0 eV The XPS Library

 

 

 

 

 

 

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale Calibration expects Cu (1s3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

C (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

C (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy C1s / eV
C-C 284.8
C-O-C ~286
O-C=O ~288.5

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

C (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by peak-fitting contamination on Poly-ethylene polymer
C (1s) BE = 285.0 eV

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

C (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
C 1s Carbide 281.9 ±1.2 280.7 283.0
C 1s Carbon 284.6 ±0.5 284.1 285.1
C 1s Alcohols 286.4 ±0.4 286.0 286.8
C 1s C with S 286.5 ±1.1 285.4 287.5
C 1s C with Cl 286.7 ±1.2 285.5 287.8
C 1s C with N 286.9 ±1.7 285.2 288.5
C 1s Ethers 287.1 ±0.9 286.2 288.0
C 1s Ketones/Aldehydes 287.6 ±0.5 287.1 288.1
C 1s Carboxyls 288.6 ±0.6 288.0 289.2
C 1s CHF 289.0 ±1.3 287.7 290.2
C 1s Carbonates 290.3 ±1.3 289.0 291.6
C 1s CF2 292.0 ±0.4 291.6 292.4
C 1s CF3 293.0 ±0.5 292.5 293.5

 Periodic Table 



 


Histograms of NIST BEs for C (1s) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  292.4 eV for CF2 based on 5 literature BEs Histogram indicates:  282.9 eV for SiC based on 6 literature BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 Periodic Table 


 


Statistical Analysis of Binding Energies in NIST XPS Database of BEs