Mno MnO MnO2 Mn3O4 MnCO3 KMnO4 MnSO4 MnF2 MnF3 Mn(OAc)2 PtMn LiCoMnNiOx  

Basic XPS Information Section 

  The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                      XPS Database of Polymers                      → Six (6) BE Tables



Manganese (Mn)

 

Manganite – MnO(OH) Manganese – Mno Lithiophilite – LiMnPO4

 

  Page Index
  • Expert Knowledge & Explanations


Manganese (Mno) Metal

Peak-fits, BEs, FWHMs, and Peak Labels


  .
Manganese (Mno) Metal
Mn (2p) Spectrum – raw spectrum

ion etched clean
Manganese (Mno) Metal
Peak-fit of Mn (2p) Spectrum
w/o asymm



 Periodic Table – HomePage  
Manganese (Mno) Metal
Mn (2p) Spectrum
extended range 
Manganese (Mno) Metal
Peak-fit of Mn (2p) Spectrum with asymm

 

Survey Spectrum of Manganese (Mno) Metal
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Manganese, (Mno) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
  Mn (2s) 769 4.23 13.2
  Mn (2p1/2) 652 4.74 14.9
Cu (Auger) & Au (4p) overlap Mn (2p3/2) 641 9.17 14.9
  Mn (3s) 84 0.674 21.9
  Mn (3p) 49 1.423 22.3

σ:  abbreviation for the term Scofield Photoionization Cross-Section which are used with IMFP and TF to generate RSFs and atom% quantitation

Plasmon Peaks

Energy Loss Peaks

~19 eV

Auger Peaks

Energy Loss :  ~19eV above peak max
Expected Bandgap for MnO2: 1.5-2.0 eV 

*Scofield Cross-Section (σ) for C (1s) = 1.0


 

Valence Band Spectrum from Manganese, Mno Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

 


 

Plasmon Peaks from Mno Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Mn (2p) – Extended Range Spectrum Mn (2p) – Extended Range Spectrum – Vertically Zoomed
 

 

Mn (LMM) Auger Peaks from Mno Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Mno Metal Native Mn Oxide

 

Overlay of Auger Peaks
Mno metal and Mn Native Oxide

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


Artefacts Caused by Argon Ion Etching

Manganese Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Mno

can form when Argon Ions are used
to removed surface contamination


 

Side-by-Side Comparison of
Mn Native-Oxide & Manganese Dioxide, MnO2
Peak-fits, BEs, FWHMs, and Peak Labels

Mn Native-Oxide MnO2
Mn (2p) from Mn Native-Oxide
on Manganese
Flood Gun OFF
Mn (2p) from MnO2
Flood Gun OFF, – chip – conductive
 C (1s) at 284.5 eV


 Periodic Table 

 
Mn Native-Oxide MnO2
C (1s) from Mn Native-Oxide
on Manganese
As-Measured

C (1s) from MnO2 – chip – conductive
Flood Gun OFF
 C (1s) at 284.5 eV

 


   .
Mn Native-Oxide MnO2
O (1s) from Mn Native-Oxide
on Manganese
As-Measured

O (1s) from MnO2 – chip – conductive
Flood Gun OFF
C (1s) at 284.5 eV

 

 


.
Mno metal MnO2
Mn (KLL) Auger Peaks from Mn metal
As-Measured

Mn (KLL) Auger Peaks from MnO2 – chip – conductive
Flood Gun OFF,  C (1s) at 284.5 eV

 


Overlay of Auger peaks
Mno metal and MnO2 

 



Survey Spectrum of Manganese Native Oxide
with Peaks Integrated, Assigned and Labelled

 Periodic Table 


 

Survey Spectrum of Manganese Dioxide (MnO2)
Peaks Integrated, Assigned and Labelled


 Periodic Table  


 

Overlays of Mn (2p) Spectra for
Mno metal, Mn Native Oxide and MnO2

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 Overlay of Mno metal and Mn Native-Oxide – Mn (2p)
Native Oxide C (1s) = 285.0 (Flood gun OFF)
 
 Overlay of Mno metal and MnO2 – Mn (2p)
Pure Oxide C (1s) = 285.0 eV
Chemical Shift: 2.0
 Periodic Table  Copyright ©:  The XPS Library 

 

Overlay of Mn (2p)
Mno Metal, Mn Native-Oxide, & MnO2 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
Mno, MnO2 

Mno
Ion etched clean
MnO2 – chip
Flood gun is OFF


Overlay of Valence Band Spectra
for Mno metal and MnO2
 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Manganese Minerals, Gemstones, and Chemical Compounds

 

Ramsdellite – MnO2 Bixbyite – Mn2O3 Rhodochrosite – MnCO3 Purpurite – MnPO4

 Periodic Table 



 

 

Six (6) Chemical State Tables of Mn (2p) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Mn (2p3/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE Source
Mn 25 Mn – element 638.7 eV   285.0 eV The XPS Library
Mn 25 Mn-O (N*8) 640.4 eV 641.7 eV 284.8 eV Avg BE – NIST
Mn 25 Mn-S (N*4) 640.8 eV 641.7 eV 284.8 eV Avg BE – NIST
Mn 25 Mn-O2 641.2 eV   285.0 eV The XPS Library
Mn 25 Mn-N (N*1) 641.3 eV   284.8 eV Avg BE – NIST
Mn 25 Mn-2O3  (N*8) 641.5 eV 641.7 eV 284.8 eV Avg BE – NIST
Mn 25 Mn-OOH (N*2) 641.5 eV 641.7 eV 284.8 eV Avg BE – NIST
Mn 25 Mn-O2 (N*10) 641.6 eV 642.8 eV 284.8 eV Avg BE – NIST
Mn 25 Mn2-CO3 641.8 eV   285.0 eV The XPS Library
Mn 25 Mn-Cl2 (N*2) 641.9 eV 642.0 eV 284.8 eV Avg BE – NIST
Mn 25 Mn-I2 (N*2) 641.9 eV   284.8 eV Avg BE – NIST
Mn 25 Mn-F2 (N*2) 642.5 eV 642.6 eV 284.8 eV Avg BE – NIST
Mn 25 Mn-(OH)6     285.0 eV The XPS Library
Mn 25 Mn-C     285.0 eV The XPS Library

 

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Mn (2p3/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Mn (2p3/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV),
Mn (2p3/2)
Mn metal 638.7
MnO 641.4
Mn2O3 641.4
MnO2 641.8

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Mn (2p3/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Mn (2p3/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Mn 2p3/2 Mn(C5H5)2 638.5 ±0.3 638.2 638.8
Mn 2p3/2 Mn 638.9 ±0.1 638.8 639.0
Mn 2p3/2 MnO 640.9 ±0.5 640.4 641.4
Mn 2p3/2 MnS 641.3 ±1.0 640.3 642.2
Mn 2p3/2 Mn3O4 641.3 ±0.2 641.1 641.5
Mn 2p3/2 Mn2O3 641.5 ±0.3 641.2 641.8
Mn 2p3/2 MnO2 641.8 ±0.7 641.1 642.5
Mn 2p3/2 MnOOH 641.8 ±0.2 641.6 642.0
Mn 2p3/2 MnCl2 642.0 ±0.2 641.8 642.2
Mn 2p3/2 MnF3 642.7 ±0.2 642.5 642.9
Mn 2p3/2 MnSO4 644.8 ±0.3 644.5 645.0

 

 Periodic Table 

 



 


Histograms of NIST BEs for Mn (2p3/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  639.7 eV for Mno based on 10 literature BEs Histogram indicates:  641.2 eV for MnO based on 9 literature BEs
Histogram indicates:  641.7 eV for Mn2O3 based on 9 literature BEs Histogram indicates:  642.3 eV for MnO2 based on 12 literature BEs

Histogram indicates:  641.4eV for Mn3O4 based on 7 literature BEs

 

 

Table #6


NIST Database of Mn (2p3/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Mn 2p3/2 Al56Mn8Pd36 638.20  Click
Mn 2p3/2 Na4[Mn(CN)6] 638.30  Click
Mn 2p3/2 Al70Mn9Pd21 638.40  Click
Mn 2p3/2 [Mn(C5H5)2] 638.50  Click
Mn 2p3/2 [Mn(C5H5)2] 638.50  Click
Mn 2p3/2 Mn 638.50  Click
Mn 2p3/2 Al70Mn9Pd21 638.50  Click
Mn 2p3/2 Al56Mn8Pd36 638.50  Click
Mn 2p3/2 Al70.5Mn6.4Pd23.1 638.50  Click
Mn 2p3/2 Al72.1Mn6.9Pd21.0Ox 638.60  Click
Mn 2p3/2 Al78.9Mn3.8Pd17.3Ox 638.60  Click
Mn 2p3/2 Mn 638.78  Click
Mn 2p3/2 Mn 638.80  Click
Mn 2p3/2 Mn 638.80  Click
Mn 2p3/2 Mn 638.80  Click
Mn 2p3/2 Mn 638.85  Click
Mn 2p3/2 Mn 638.90  Click
Mn 2p3/2 Mn 639.00  Click
Mn 2p3/2 Mn 639.00  Click
Mn 2p3/2 Mn 639.00  Click
Mn 2p3/2 Mn 639.00  Click
Mn 2p3/2 MnP 639.00  Click
Mn 2p3/2 K3[Mn(CN)6] 639.70  Click
Mn 2p3/2 MnFe2O4 639.80  Click
Mn 2p3/2 MnOx/Mn 640.00  Click
Mn 2p3/2 MnFeCrO4 640.10  Click
Mn 2p3/2 MnFe1.5Cr0.5O4 640.10  Click
Mn 2p3/2 MnS 640.30  Click
Mn 2p3/2 MnCr2O4 640.30  Click
Mn 2p3/2 MnFe0.5Cr1.5O4 640.30  Click
Mn 2p3/2 MnO 640.40  Click
Mn 2p3/2 MnS2 640.40  Click
Mn 2p3/2 MnSe2 640.50  Click
Mn 2p3/2 MnO 640.50  Click
Mn 2p3/2 [N(C2H5)4]2[MnBr4] 640.60  Click
Mn 2p3/2 [Mn(CO)3(C5H5)] 640.60  Click
Mn 2p3/2 MnCr2O4 640.60  Click
Mn 2p3/2 [Mn2(CO)8(P(C6H5)3)2] 640.70  Click
Mn 2p3/2 Mn 640.70  Click
Mn 2p3/2 MnO 640.70  Click
Mn 2p3/2 Mn 640.80  Click
Mn 2p3/2 Mn2TiO4 640.80  Click
Mn 2p3/2 MnO 640.80  Click
Mn 2p3/2 MnS 640.80  Click
Mn 2p3/2 MnTe 640.80  Click
Mn 2p3/2 Mn0.25Fe0.75Cr2O4 640.80  Click
Mn 2p3/2 Mn0.75Fe0.25Cr2O4 640.80  Click
Mn 2p3/2 Mn 640.90  Click
Mn 2p3/2 MnS 640.90  Click
Mn 2p3/2 [MnBr(CO)3(P(OCH3)3)2] 641.00  Click
Mn 2p3/2 Mn 641.00  Click
Mn 2p3/2 MnFe2O4 641.00  Click
Mn 2p3/2 CuMn2O4 641.00  Click
Mn 2p3/2 [N(C2H5)4]2MnCl4 641.10  Click
Mn 2p3/2 MnO2 641.10  Click
Mn 2p3/2 Mn3O4 641.10  Click
Mn 2p3/2 Pb0.92Mn0.08Te 641.10  Click
Mn 2p3/2 Mn0.5Fe0.5Cr2O4 641.10  Click
Mn 2p3/2 MnOx/Mn 641.10  Click
Mn 2p3/2 Mn2O3 641.20  Click
Mn 2p3/2 Mn3O4 641.20  Click
Mn 2p3/2 Mn3O4 641.20  Click
Mn 2p3/2 MnN 641.30  Click
Mn 2p3/2 MnAl2O4 641.30  Click
Mn 2p3/2 Mn3O4 641.30  Click
Mn 2p3/2 MnO 641.30  Click
Mn 2p3/2 [MnBr(CO)4(As(C6H5)3)] 641.40  Click
Mn 2p3/2 Mn3O4 641.40  Click
Mn 2p3/2 MnO 641.40  Click
Mn 2p3/2 Pb0.94Mn0.06Te 641.40  Click
Mn 2p3/2 [MnBr(CO)4(P(C6H5)3)] 641.50  Click
Mn 2p3/2 Mn(OH)O 641.50  Click
Mn 2p3/2 Mn2O3 641.50  Click
Mn 2p3/2 Mn2O3 641.50  Click
Mn 2p3/2 CoMn2O4 641.50  Click
Mn 2p3/2 Mn3O4 641.50  Click
Mn 2p3/2 MnO 641.50  Click
Mn 2p3/2 Mn3O4 641.50  Click
Mn 2p3/2 [MnBr(CO)4(Sb(C6H5)3)] 641.60  Click
Mn 2p3/2 Mn2(CO)10 641.60  Click
Mn 2p3/2 [N(C2H5)4]2[Mn(CN)4] 641.60  Click
Mn 2p3/2 MnO2 641.60  Click
Mn 2p3/2 Mn2O3 641.60  Click
Mn 2p3/2 Mn2O3 641.60  Click
Mn 2p3/2 Mn2O3 641.60  Click
Mn 2p3/2 Mn3O4 641.60  Click
Mn 2p3/2 MnS 641.65  Click
Mn 2p3/2 [MnBr(CO)4]2 641.70  Click
Mn 2p3/2 Mn(OH)O 641.70  Click
Mn 2p3/2 Mn2O3 641.70  Click
Mn 2p3/2 Mn2O3 641.70  Click
Mn 2p3/2 Mn2O3 641.70  Click
Mn 2p3/2 MnO 641.70  Click
Mn 2p3/2 Pb0.96Mn0.04Te 641.70  Click
Mn 2p3/2 MnSe 641.80  Click
Mn 2p3/2 [Mn(CO)5Br] 641.90  Click
Mn 2p3/2 MnCl2 641.90  Click
Mn 2p3/2 Ca3[Mn(OH)6]2 641.90  Click
Mn 2p3/2 MnI2 641.90  Click
Mn 2p3/2 MnI2 641.90  Click
Mn 2p3/2 Mn3O4 641.90  Click
Mn 2p3/2 MnS 641.90  Click
Mn 2p3/2 MnCl2 642.00  Click
Mn 2p3/2 Sr3[Mn(OH)6]2 642.00  Click
Mn 2p3/2 MnBr2 642.00  Click
Mn 2p3/2 MnO2 642.00  Click
Mn 2p3/2 Pb0.98Mn0.02Te 642.00  Click
Mn 2p3/2 Mn2O3 642.00  Click
Mn 2p3/2 [Mn(H2NC(O)NHC(O)NH2)2]Cl2 642.10  Click
Mn 2p3/2 MnBr2 642.10  Click
Mn 2p3/2 MnO2 642.20  Click
Mn 2p3/2 MnO2 642.20  Click
Mn 2p3/2 MnO2 642.20  Click
Mn 2p3/2 MnO2 642.20  Click
Mn 2p3/2 CuMn2O4 642.30  Click
Mn 2p3/2 MnO2 642.40  Click
Mn 2p3/2 MnO2 642.40  Click
Mn 2p3/2 MnF2 642.50  Click
Mn 2p3/2 MnO 642.50  Click
Mn 2p3/2 MnF2 642.60  Click
Mn 2p3/2 MnF3 642.60  Click
Mn 2p3/2 MnO2 642.60  Click
Mn 2p3/2 MnO2 642.60  Click
Mn 2p3/2 MnO2 642.70  Click
Mn 2p3/2 NiZnMnO4 642.70  Click
Mn 2p3/2 MnSO4 642.70  Click
Mn 2p3/2 MnO2 642.80  Click
Mn 2p3/2 Mn2O3 642.80  Click
Mn 2p3/2 MnO2 643.40  Click
Mn 2p3/2 KMnO4 647.00  Click

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies on Manganese Materials

 

 


 

Expert Knowledge Explanations

 Periodic Table 


 

 

Manganese Chemical Compounds

 

Peak-fits and Overlays of Chemical State Spectra

Pure Manganese, Mno:  Mn (2p)
Cu (2p3/2) BE = 932.6 eV
MnO2:  Mn (2p3/2)
C (1s) BE = 285.0 eV
MnF2:  Mn (2p3/2)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Mn (2p) Spectra shown Above

C (1s) BE = 285.0 eV

 

Chemical Shift between Mn vs MnO2: 2.7 eV
 Chemical Shift between Mn vs MnF2: 3.2 eV

 Periodic Table 

 


 

 

Manganese Oxide (MnO2)
pressed pellet or exposed bulk of single crystal

Survey Spectrum from MnO2
Flood gun is OFF
Mn (2p3/2) Chemical State Spectrum from MnO2
Flood gun is OFF

 
O (1s) Chemical State Spectrum from MnO2
Flood gun is OFF
C (1s) Chemical State Spectrum from MnO2
Flood gun is OFF

   .
Valence Band Spectrum from MnO2
Flood gun is OFF
Auger Signals from MnO2
Flood gun is OFF

 


Shake-up Features
for MnO2

Shake-up Region above Mn (2p)  Shake-up Region above Mn (2p) – zoomed

 


 

Multiplet Splitting Features for
Manganese Compounds

Mn metal – NO Splitting for Mn (3s) MnO2 Compound – Multiplet Splitting Peaks for Mn (3s)

  .
MnF2 Compound – Multiplet Splitting Peaks for Mn (3s)

MnF3 Compound – Multiplet Splitting Peaks for Mn (3s)

 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

 

Manganese Chemical Compounds

   
   
   
   

 Periodic Table


 

Quantitation from Pure, Homogeneous Binary Compound
composed of Manganese

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

 



Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 Periodic Table 


 

 

Flood Gun Effect on Native Oxide of Manganese

 

Native Oxide of Manganese Sheet – Sample GROUNDED
versus
Native Oxide of Manganese Sheet – Sample FLOATING

 


 

Native Oxide of Manganese Sheet – Sample Grounded

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage, versus Max Voltage

Mn (2p) O (1s) C (1s)
     
 Periodic Table     

 

Native Oxide of Manganese Sheet – Sample Floating

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Mn (2p) O (1s) C (1s)
     
 Periodic Table     

 Peri

 


 

XPS Study of UHV Gas Captured by Freshly Ion Etched Manganese
 
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Mno

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
 
 
 
Mn (2p) Signal
 O (1s) Signal C (1s) Signal
     
 
 
Copyright ©:  The XPS Library
 

 

AES Study of UHV Gas Captured by Freshly Ion Etched Manganese

Manganese sheet was ion etched and allowed to react with residual UHV gases overnight – ~14 hr run.

Mn (LMM) Signal:
Mn at front -> MnOx at rear 
Mn KE = 630.3 eV,    MnOx KE = 631.7 eV
O (KLL) Signal:
Mn at front -> MnOx at rear 
O KE = 507.5 eV

   

 

Chemical State Spectra from MnOx using Charge Control by AES
 
Mn (KLL) Signal:
MnOx w charge control – JEOL Hemi-sphere (HSA) – 25 kV
High Energy Resolution Mode for Chemical States
O (KLL) Signal:
MnOx w charge control – JEOL Hemi-sphere (HSA) – 25 kV
High Energy Resolution Mode for Chemical States

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Chemical State Spectra from Slow Depth Profile of Mn Native Oxide by AES

Native Mn Oxide on Mn ribbon was slowly ion etched using High Energy Resolution conditions to measure Chemical States by Auger

Mn (KLL) O (KLL)
   
   

 


 

 

Manganese Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 

 

XPS Facts, Guidance & Information

 Periodic Table 

    Element   Manganese (Mn)
 
    Primary XPS peak used for Peak-fitting:   Mn (2p)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for “p” orbital, ΔBE =11.0 eV
 
    Binding Energy (BE) of Primary XPS Signal:   642 eV
 
    Scofield Cross-Section (σ) Value:   Mn (2p3/2) = 9.17       Mn (2p1/2) = 4.74
 
    Conductivity:   Mn resistivity =  
Native Oxide suffers Differential Charging
 
    Range of Mn (2p) Chemical State BEs:   642 – 648 eV range   (Mno to MnF2)  
    Signals from other elements that overlap
Mn (2p) Primary Peak:
  xx (xx)  
    Bulk Plasmons:   ~xx eV above peak max for pure  
    Shake-up Peaks:   xx  
    Multiplet Splitting Peaks:   xx  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Mn (2p)

  • FWHM (eV) of Mn (2p3/2) in Pure Mno ~0.9 eV using 50 eV Pass Energy after ion etching:
  • FWHM (eV) of Mn (2p3/2) in MnO2 xtal:  ~1.1 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  642 eV for Mn (2p3/2) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Mn (2p):  xxxx

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.
  • Constraints on Peak-fitting: ??

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Manganese

  • Manganese develops a thick native oxide due to the reactive nature of clean Manganese .
  • The native oxide of Mn Ox is 7-9 nm thick.
  • Manganese thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Manganese forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal Mn (2p) peak as well as Mn (3p).
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Manganese (Mn)

  • Conductivity:  Manganese readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Mn (2p3/2) at 642 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  630 -660 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  630 – 700 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching Mn and various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature
 
Spectra from Thermo Scientific website
 
 
 
 



End of File