Basic XPS Information Section*
* The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
→ Periodic Table – HomePage XPS Database of Polymers →Six (6) BE Tables
Neon (Ne)
Neon, Neo (in a discharge tube) | ||
Neon (Ne+) Implanted into HOPG, Graphite
Peak-fits, BEs, FWHMs, and Peak Labels
Neon (Ne+) Peak-fit of Ne (1s) Spectrum Implanted into HOPG |
Neon (Ne+) Peak-fit of Ne (2s) Spectrum Implanted into HOPG |
Six (6) Chemical State Tables of Ne (1s) BEs
- The XPS Library Spectra-Base
- PHI Handbook
- Thermo-Scientific Website
- XPSfitting Website
- Techdb Website
- NIST Website
Notes of Caution when using Published BEs and BE Tables:
- Accuracy of Published BEs
- The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument. Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications
- Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples. From 284.2 to 285.3 eV
- The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
- Worldwide Differences in Energy Scale Calibrations
- For various reasons authors still use older energy scale calibrations
- Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
- This range causes BEs in the higher BE end to be larger than expected
- This variation increases significantly above 600 eV BE
- Charge Compensation
- Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
- Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
- Charge Referencing Methods for Insulators
- Charge referencing is a common method, but it can produce results that are less reliable.
- When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
- The hydrocarbon peak is normally the largest peak at the lowest BE.
- Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV. Other BEs can be as low as 284.2 eV or as high as 285.3 eV
- Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
- When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.
Table #2
Ne (1s) Chemical State BEs from: “PHI Handbook”
C (1s) BE = 284.8 eV
Copyright ©: Ulvac-PHI
Table #3
Ne (1s) Chemical State BEs from: “Thermo-Scientific” Website
C (1s) BE = 284.8 eV
Chemical state | Binding energy Ne (1s) / eV |
Implanted Ne | 861.9 |
Copyright ©: Thermo Scientific
Table #4
Ne (1s) Chemical State BEs from: “XPSfitting” Website
Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV
Copyright ©: Mark Neisinger
Table #5
Ne (1s) Chemical State BEs from: “Techdb.podzone.net” Website
XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV
XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト
|
NIST Database of Ne (1s) Binding Energies
NIST Standard Reference Database 20, Version 4.1
Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.
Element | Spectral Line | Formula | Energy (eV) | Reference |
---|---|---|---|---|
Ne | 1s | Ne | 862.40 | Click |
Ne | 1s | Ne | 861.60 | Click |
Ne | 1s | Ne | 862.20 | Click |
Ne | 1s | Ne | 863.40 | Click |
Statistical Analysis of Binding Energies in NIST XPS Database of BEs