Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                     XPS Database of Polymers             → Six (6) BE Tables



Nickel (Ni)

 

Bunsenite – NiO Nickel – Nio Gaspéite – NiCO3

 

  Page Index
  • Expert Knowledge & Explanations


Nickel (Nio) Metal

Peak-fits, BEs, FWHMs, and Peak Labels


  .
Nickel (Nio) Metal
Ni (2p3/2) Spectrum – raw spectrum

ion etched clean
Nickel (Nio) Metal
Peak-fit of Ni (2p3/2) Spectrum (w/o asymm)
using 2p3/2 to 2p1/2 spin-orbit splitting for peak-fit
   

 Periodic Table – HomePage  
Nickel (Nio) Metal
Ni (2p) Spectrum –
extended range 
Nickel (Nio) Metal
Peak-fit of Ni (2p3/2) Spectrum (w asymm)

 

Survey Spectrum of Nickel (Nio) Metal
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Nickel, (Nio) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
  Ni (2s) 1008 5.16 9.1
  Ni (2p1/2) 870 7.57 11.1
Fe (Auger) overlaps Ni (2p3/2) 852.65 14.61 11.1
  Ni (3s) 111 0.892 19.7
  Ni (3p) 67 2.217 20.2

σ:  abbreviation for the term Scofield Photoionization Cross-Section which are used with IMFP and TF to generate RSFs and atom% quantitation

6 eV Satellite Peaks
859 eV
875 eV

Auger Peaks

Expected Bandgap for NiO: 3.6 eV 

*Scofield Cross-Section (σ) for C (1s) = 1.0

 


 Periodic Table 

Valence Band Spectrum from Nickel (Nio) Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

 


 

Plasmon Peaks from Nio Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Ni (2p) – Extended Range Spectrum Ni (2p) – Extended Range Spectrum – Vertically Zoomed
 

 

Ni (LMM) Auger and Ni (3s) Peaks from Nio Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Ni LMM Ni (3s)

 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Artefacts Caused by Argon Ion Etching

Nickel Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Nio

can form when Argon Ions are used
to removed surface contamination

na  na

 

 

Side-by-Side Comparison of
Ni Native Oxide & Nickel Oxide (NiO)
(single crystal, <100>, fresh exposed bulk)
Peak-fits, BEs, FWHMs, and Peak Labels

Ni Native Oxide NiO  <100> fresh bulk
Ni (2p3/2) from Ni Native Oxide
on Nickel
As-Measured, C (1s) at 285.54 eV  (Flood Gun OFF)
Ni (2p3/2) from NiO – fresh exposed bulk single crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 Periodic Table 

 
Ni Native Oxide NiO
C (1s) from Ni Native Oxide
on Nickel
As-Measured, C (1s) at 285.54 eV (Flood Gun OFF)

C (1s) from NiO – fresh exposed bulk single crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


 
Ni Native Oxide NiO
O (1s) from Ni Native Oxide
on Nickel
As-Measured, C (1s) at 285.54 eV  (Flood Gun OFF)

O (1s) from NiO – fresh exposed bulk single crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV


.
Ni Native Oxide NiO
Ni (KLL) Auger Peaks from Ni Native Oxide
on Nickel
As-Measured, C (1s) at 285.54 eV  (Flood Gun OFF)

Ni (KLL) Auger Peaks from NiO – fresh exposed bulk single crystal
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV



  .
Ni (3s) from Ni metal
No multiplet splitting

Multiplet Splitting
Ni (3s) from NiO – fresh exposed bulk single crystal
Flood Gun ON, Charge Referenced to C (1s) at 285.0 eV


 


Survey Spectrum of Nickel (Ni) Native Oxide
with Peaks Integrated, Assigned and Labelled

 Periodic Table 


 

Survey Spectrum of Nickel Oxide (NiO)
with Peaks Integrated, Assigned and Labelled
fresh exposed bulk of <100> single crystal


 Periodic Table  


 

Overlays of Ni (2p3/2) Spectra for
Nio metal, Ni Native-Oxide and Nickel Oxide (NiO)

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 Overlay of Nio metal and Ni Native-Oxide – Ni (2p3/2
Native Oxide C (1s) = 285.54
(Flood gun OFF)
 Overlay of Nio metal and NiO – Ni (2p3/2
Pure Oxide C (1s) = 285.0 eV
Chemical Shift: 1.34
 Periodic Table  Copyright ©:  The XPS Library 

 

Overlay of Ni (2p3/2)
Nio Metal, Ni Native-Oxide, & NiO (crystal) 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
Nio, NiO 

Nio
Ion etched clean
NiO – fresh exposed bulk single crystal
Flood gun is ON,  Charge referenced so C (1s) = 285.0 eV


Overlay of Valence Band Spectra
for Nio metal and NiO (fresh exposed bulk single crystal)

Features Observed 

  • xx
  • xx
  • xx

 Periodic Table 



 

Nickel Minerals, Gemstones, and Chemical Compounds

 

Liebenbergite – Ni2SiO4 Donharrisite – Ni3HgS3 Maucherite – Ni11As8 Millerite – NiS

 Periodic Table 



 

 

Six (6) Chemical State Tables of Ni (2p3/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Ni (2p3/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Ni 28 CuNi (N*1) 852.6 eV   284.8 eV Avg BE – NIST
Ni 28 Ni – element 852.6 eV   285.0 eV The XPS Library
Ni 28 CoNi (N*3) 852.7 eV 853.1 eV 284.8 eV Avg BE – NIST
Ni 28 Mg2Ni (N*2) 852.7 eV   284.8 eV Avg BE – NIST
Ni 28 Ni3B 852.8 eV   285.0 eV The XPS Library
Ni 28 Ni3Th7 (N*3) 852.8 eV 853.1 eV 284.8 eV Avg BE – NIST
Ni 28 Ni-S (N*3) 852.8 eV 853.6 eV 284.8 eV Avg BE – NIST
Ni 28 CeNi2 (N*3) 853.0 eV   284.8 eV Avg BE – NIST
Ni 28 Ni2P 853.0 eV 853.2 eV 285.0 eV The XPS Library
Ni 28 Ni-Si (n*5) 853.0 eV 853.5 eV 284.8 eV Avg BE – NIST
Ni 28 Ni-Ti 853.1 eV   285.0 eV The XPS Library
Ni 28 Ni-Se (N*2) 853.2 eV   284.8 eV Avg BE – NIST
Ni 28 Ni-I2 (N*1) 853.9 eV   284.8 eV Avg BE – NIST
Ni 28 Ni-O 854.1 eV   285.0 eV The XPS Library
Ni 28 Ni(CN)2 (N*2) 854.9 eV 854.9 eV 284.8 eV Avg BE – NIST
Ni 28 Ni-(OH)2 855.3 eV   285.0 eV The XPS Library
Ni 28 Ni-(OH)2 (N*8) 855.3 eV 856.0 eV 284.8 eV Avg BE – NIST
Ni 28 Ni-CO3 855.9 eV 856.3 eV 285.0 eV The XPS Library
Ni 28 Ni-Cl2 (N*4) 856.3 eV 856.7 eV 284.8 eV Avg BE – NIST
Ni 28 NiPO4 856.6 eV   285.0 eV The XPS Library
Ni 28 NiSO4 (N*4) 856.8 eV 857.3 eV 284.8 eV Avg BE – NIST
Ni 28 Ni2(NO3)2 (N*2) 857.0 eV 857.1 eV 284.8 eV Avg BE – NIST
Ni 28 NiClO4 (N*1) 857.2 eV   284.8 eV Avg BE – NIST
Ni 28 Ni-F2 (N*3) 857.4 eV 858.2 eV 284.8 eV Avg BE – NIST
Ni 28 K2NiF6 (N*1) 861 eV   284.8 eV Avg BE – NIST
Ni 28 Ni(P)     285.0 eV The XPS Library
Ni 28 Ni-C     285.0 eV The XPS Library

 

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Ni (2p3/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Ni (2p3/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Ni (2p3/2)
Ni metal 852.6
NiO 853.7
Ni(OH)2 855.6

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Ni (2p3/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Ni (2p3/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Ni 2p3/2 Ni 852.7 ±0.2 852.5 852.9
Ni 2p3/2 NiS 853.1 ±0.4 852.7 853.5
Ni 2p3/2 Silicides 853.3 ±0.3 853.0 853.5
Ni 2p3/2 NiO 854.0 ±0.5 853.5 854.4
Ni 2p3/2 Ni(dimethylglyoxim)2 855.1 ±0.3 854.8 855.3
Ni 2p3/2 Ni(OH)2 855.7 ±0.4 855.3 856.0
Ni 2p3/2 Ni(acac)2 856.0 ±0.3 855.7 856.2
Ni 2p3/2 Halides 856.4 ±1.1 855.3 857.5
Ni 2p3/2 Ni(OAc)2・4H2O 856.5 ±0.3 856.2 856.8
Ni 2p3/2 Ni2O3 856.6 ±0.8 855.8 857.3
Ni 2p3/2 Ni(NO3)2 857.0 ±0.2 856.8 857.2

 

 Periodic Table 



 

 

Histograms of NIST BEs for Ni (2p3/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  852.7 eV for Nio based on 38 literature BEs Histogram indicates:  854.6 eV for NiO based on 20 literature BEs

 

Histogram indicates:  855.8 eV for Ni(OH)2 based on 9 literature BEs

Table #6


NIST Database of Ni (2p3/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Ni 2p3/2 Ni 852.00  Click
Ni 2p3/2 Ni0.86TiO1.86 852.10  Click
Ni 2p3/2 AuNi 852.15  Click
Ni 2p3/2 Ni 852.20  Click
Ni 2p3/2 NiO0.25 + TiO1.59 852.20  Click
Ni 2p3/2 NiO0.25 + TiO1.59 852.20  Click
Ni 2p3/2 Ni 852.30  Click
Ni 2p3/2 Ni/Cu 852.30  Click
Ni 2p3/2 InNi 852.35  Click
Ni 2p3/2 Ni2B 852.40  Click
Ni 2p3/2 Ni 852.40  Click
Ni 2p3/2 Ni 852.40  Click
Ni 2p3/2 Ni 852.40  Click
Ni 2p3/2 Ni 852.40  Click
Ni 2p3/2 Ni/Cu 852.40  Click
Ni 2p3/2 Ni/Cu 852.42  Click
Ni 2p3/2 NiPd 852.45  Click
Ni 2p3/2 Ni 852.50  Click
Ni 2p3/2 Ni 852.50  Click
Ni 2p3/2 Ni 852.50  Click
Ni 2p3/2 GaNi 852.50  Click
Ni 2p3/2 CuNi 852.55  Click
Ni 2p3/2 Ni/Cu 852.58  Click
Ni 2p3/2 Ni 852.60  Click
Ni 2p3/2 Ni 852.60  Click
Ni 2p3/2 CeNi2 852.60  Click
Ni 2p3/2 InNi 852.60  Click
Ni 2p3/2 Ni/Cu 852.60  Click
Ni 2p3/2 Ga2Ni3 852.60  Click
Ni 2p3/2 Al3Ni 852.65  Click
Ni 2p3/2 Mg2Ni 852.65  Click
Ni 2p3/2 Ni 852.65  Click
Ni 2p3/2 La7Ni3 852.65  Click
Ni 2p3/2 Ni/Cu 852.65  Click
Ni 2p3/2 Ni 852.68  Click
Ni 2p3/2 Ni 852.68  Click
Ni 2p3/2 Mg2Ni 852.70  Click
Ni 2p3/2 Ni89P11 852.70  Click
Ni 2p3/2 Ni89P11 852.70  Click
Ni 2p3/2 Ni/O2 852.70  Click
Ni 2p3/2 Ni/O2 852.70  Click
Ni 2p3/2 Ni/O2 852.70  Click
Ni 2p3/2 O2/S/Ni 852.70  Click
Ni 2p3/2 Ni/O2/Ba 852.70  Click
Ni 2p3/2 In3Ni2 852.70  Click
Ni 2p3/2 In9Ni13 852.70  Click
Ni 2p3/2 InNi3 852.70  Click
Ni 2p3/2 GaNi3 852.70  Click
Ni 2p3/2 CoNi 852.72  Click
Ni 2p3/2 Ni 852.73  Click
Ni 2p3/2 Ni 852.73  Click
Ni 2p3/2 Ni2Ta 852.75  Click
Ni 2p3/2 Ni 852.76  Click
Ni 2p3/2 Ni 852.78  Click
Ni 2p3/2 Ni 852.78  Click
Ni 2p3/2 Al3Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni 852.80  Click
Ni 2p3/2 Ni3Th7 852.80  Click
Ni 2p3/2 NiS 852.80  Click
Ni 2p3/2 NiSc 852.80  Click
Ni 2p3/2 Al70Co15Ni15 852.80  Click
Ni 2p3/2 Cr21Fe8Ni71 852.80  Click
Ni 2p3/2 Ni 852.81  Click
Ni 2p3/2 [NiI2(HP(C6H5)2)2] 852.90  Click
Ni 2p3/2 [NiBr2(PH(C6H5)2)3] 852.90  Click
Ni 2p3/2 Ni 852.90  Click
Ni 2p3/2 Ni 852.90  Click
Ni 2p3/2 Ni 852.90  Click
Ni 2p3/2 Ni5U 852.90  Click
Ni 2p3/2 Ni/Al2O3 852.90  Click
Ni 2p3/2 Ni79P21 852.90  Click
Ni 2p3/2 Ni79P21 852.90  Click
Ni 2p3/2 B6Cr14Fe32Ni36P12Ox 852.90  Click
Ni 2p3/2 Li1.55NiPS3 852.90  Click
Ni 2p3/2 CrNi2 852.95  Click
Ni 2p3/2 CoNi 852.95  Click
Ni 2p3/2 Ni3B 853.00  Click
Ni 2p3/2 Ni 853.00  Click
Ni 2p3/2 Ni 853.00  Click
Ni 2p3/2 CeNi2 853.00  Click
Ni 2p3/2 CeNi2 853.00  Click
Ni 2p3/2 CeNi2 853.00  Click
Ni 2p3/2 Ni3Th7 853.00  Click
Ni 2p3/2 Ni2Si 853.00  Click
Ni 2p3/2 Ni2Si 853.00  Click
Ni 2p3/2 Ni2Si 853.00  Click
Ni 2p3/2 NiTi 853.00  Click
Ni 2p3/2 CoNi 853.09  Click
Ni 2p3/2 Ni2P 853.10  Click
Ni 2p3/2 ((CH3)2NC6H4N(CH3)2)2[Ni(NCC(S)C(S)CN)2] 853.10  Click
Ni 2p3/2 Ni/Ca0.166Ni0.833 853.10  Click
Ni 2p3/2 B4Cr15Ni81 853.10  Click
Ni 2p3/2 B4Cr15Ni81 853.10  Click
Ni 2p3/2 AlNi 853.10  Click
Ni 2p3/2 Ni3Th7 853.15  Click
Ni 2p3/2 NiTi 853.15  Click
Ni 2p3/2 Zr63.2Ni36.8 853.18  Click
Ni 2p3/2 NiB 853.20  Click
Ni 2p3/2 Ni2Ta 853.20  Click
Ni 2p3/2 NiSe 853.20  Click
Ni 2p3/2 NiSe2 853.20  Click
Ni 2p3/2 Ni5P4 853.20  Click
Ni 2p3/2 NiS 853.20  Click
Ni 2p3/2 Al52Ni48 853.20  Click
Ni 2p3/2 [Ni(CH3)(P(C2H5)3)2(C6H2(CH3)3)] 853.30  Click
Ni 2p3/2 Ni 853.30  Click
Ni 2p3/2 Ni2Ta 853.30  Click
Ni 2p3/2 Ni/O2/Cu 853.30  Click
Ni 2p3/2 NiO 853.40  Click
Ni 2p3/2 (C6H4N2C6H4)2(NCC(S)C(S)CN)2Ni 853.40  Click
Ni 2p3/2 (N(C2H5)4)[Ni((C6H5)C(S)C(S)(C6H5))2] 853.50  Click
Ni 2p3/2 (N(C2H5)4)[Ni((C6H5)C(S)C(S)(C6H5))2] 853.50  Click
Ni 2p3/2 Ni 853.50  Click
Ni 2p3/2 NiO 853.50  Click
Ni 2p3/2 NiSi 853.50  Click
Ni 2p3/2 NiSi 853.50  Click
Ni 2p3/2 NiO 853.60  Click
Ni 2p3/2 NiO 853.60  Click
Ni 2p3/2 NiS2 853.60  Click
Ni 2p3/2 (C7H7)2[Ni(NCC(S)C(S)CN)2] 853.60  Click
Ni 2p3/2 K2[Ni(SCN)4] 853.70  Click
Ni 2p3/2 [NiCl(C6H5)(P(C2H5)3)2] 853.70  Click
Ni 2p3/2 NiO 853.70  Click
Ni 2p3/2 NiO0.66 853.70  Click
Ni 2p3/2 Al3Ni 853.75  Click
Ni 2p3/2 [Ni(N2H5)2(S2C2(C6H5)2)2] 853.80  Click
Ni 2p3/2 [Ni(P(C6H5)3)2(C6H5OCCOC6H5)] 853.80  Click
Ni 2p3/2 [Ni((C6H5)2POCH3)4] 853.80  Click
Ni 2p3/2 [Ni(P(OC2H5)3)4] 853.80  Click
Ni 2p3/2 Ni 853.80  Click
Ni 2p3/2 ((CH3)2NC6H4N(CH3)2)[Ni(NCC(S)C(S)CN)2] 853.80  Click
Ni 2p3/2 Li0.37NiPS3 853.80  Click
Ni 2p3/2 [Ni((C6H5)CSSC(C6H5))2] 853.90  Click
Ni 2p3/2 [Ni((C6H5)CSSC(C6H5))2] 853.90  Click
Ni 2p3/2 [Ni(CO)2((C6H5)2PCH2CH2P(C2H5)(C6H5))] 853.90  Click
Ni 2p3/2 NiI2 853.90  Click
Ni 2p3/2 NiO 853.90  Click
Ni 2p3/2 NiO 853.90  Click
Ni 2p3/2 NiO 853.90  Click
Ni 2p3/2 ((C2H5)4N)2[Ni(SC(O)(C5H3N)C(O)S)2] 853.90  Click
Ni 2p3/2 [NiCl(C6H2(CH3)3)(P(C2H5)3)2] 853.95  Click
Ni 2p3/2 [N(C2H5)4]2[NiI4] 854.00  Click
Ni 2p3/2 NiO 854.00  Click
Ni 2p3/2 ((C2H5)4N)2[Ni(SC6H4C(O)NHCH2CH2NHC(O)C6H4S)] 854.00  Click
Ni 2p3/2 [NiBr(NO)(P(C6H5)3)2] 854.10  Click
Ni 2p3/2 [N(C2H5)4]2[Ni(S2C2(CN)2)2] 854.10  Click
Ni 2p3/2 NiO 854.10  Click
Ni 2p3/2 O2/S/Ni 854.10  Click
Ni 2p3/2 [Ni(C5H5)2] 854.20  Click
Ni 2p3/2 NiO 854.20  Click
Ni 2p3/2 NiO 854.20  Click
Ni 2p3/2 [Ni(SCH2CH2S)] 854.30  Click
Ni 2p3/2 [NiBr2(P(C3H7)(C6H5)2)2] 854.30  Click
Ni 2p3/2 NiO 854.30  Click
Ni 2p3/2 [NiBr(CClCCl2)(P(C2H5)3)2] 854.40  Click
Ni 2p3/2 [Ni(CO)4] 854.40  Click
Ni 2p3/2 [NiCl2((C6H5)3P)2] 854.40  Click
Ni 2p3/2 NiO 854.40  Click
Ni 2p3/2 NiO 854.40  Click
Ni 2p3/2 NiO 854.40  Click
Ni 2p3/2 NiO 854.40  Click
Ni 2p3/2 NiO 854.40  Click
Ni 2p3/2 NiO 854.40  Click
Ni 2p3/2 ((C2H5)4N)2[Ni(OC6H4C(O)NHCH2CH2NHC(O)C6H4O)] 854.40  Click
Ni 2p3/2 [Ni(C6H5C(O)CHC(O)C6H5)2] 854.50  Click
Ni 2p3/2 [Ni(HONCHC6H4O)2] 854.50  Click
Ni 2p3/2 [NiBr2(CH3COOH)2PCH2CH2P(CH3COOH)2] 854.50  Click
Ni 2p3/2 [Ni(C8H12)2] 854.50  Click
Ni 2p3/2 NiO 854.50  Click
Ni 2p3/2 Ni/O2 854.50  Click
Ni 2p3/2 Ni/O2 854.50  Click
Ni 2p3/2 Ni/O2/Ba 854.50  Click
Ni 2p3/2 NiPS3 854.50  Click
Ni 2p3/2 [NiCl2(P(C6H5)3)2] 854.60  Click
Ni 2p3/2 [Ni(-C-6H5S)2] 854.60  Click
Ni 2p3/2 [NiCl2((C6H5)3P)2] 854.60  Click
Ni 2p3/2 [Ni(S2P(C4H9O)2)2] 854.60  Click
Ni 2p3/2 Na6[Ni(CH3COO)2PCH2CH2P(CH3COO)2].6H2O 854.60  Click
Ni 2p3/2 NiO/Ca0.166Ni0.833 854.60  Click
Ni 2p3/2 (C6H5)3(C6H5CH2)P[Ni(SC(O)(C5H3N)C(O)S)2] 854.60  Click
Ni 2p3/2 Ni2O3.2H2O 854.60  Click
Ni 2p3/2 [(Pt(P(C6H5)3)2S)2Ni(C6H5)2PCH2CH2P(C6H5)2)][PF6]2 854.60  Click
Ni 2p3/2 [NiCl2(P(C4H9)3)2] 854.70  Click
Ni 2p3/2 [NiCl2(P(C4H9)3)2] 854.70  Click
Ni 2p3/2 [NiCl2((C2H5)3P)2] 854.70  Click
Ni 2p3/2 [NiBr2((C6H5)3P)2] 854.70  Click
Ni 2p3/2 [NiBr2(P(C3H7)(C6H5)2)2] 854.70  Click
Ni 2p3/2 [Ni(CCC6H5)2(P(C2H5)3)2] 854.70  Click
Ni 2p3/2 NiO 854.70  Click
Ni 2p3/2 (C10H24N4)NiCl2 854.70  Click
Ni 2p3/2 K2[Ni(NHC(O)NHC(O)NH)2] 854.80  Click
Ni 2p3/2 [NiCl(CFCF2)(P(C2H5)3)2] 854.80  Click
Ni 2p3/2 [Ni(CO)4] 854.80  Click
Ni 2p3/2 [Ni(NH2CH2CH2NH2)3]Cl2.2H2O 854.80  Click
Ni 2p3/2 (C6H4N2C6H4)(NCC(S)C(S)CN)2Ni 854.80  Click
Ni 2p3/2 Cs4(B11H11)2Ni 854.80  Click
Ni 2p3/2 Ni(CN)2 854.90  Click
Ni 2p3/2 [Ni(CH3CNOCNOCH3)2] 854.90  Click
Ni 2p3/2 [Ni(SC(SCH3)CHC(C6H5)O)2] 855.00  Click
Ni 2p3/2 [Ni(CH3CNOCNOCH3)2] 855.00  Click
Ni 2p3/2 [NiCl2((C6H5)3P)2] 855.00  Click
Ni 2p3/2 [Ni(CO)2((C6H5)3P)2] 855.00  Click
Ni 2p3/2 NiO 855.00  Click
Ni 2p3/2 Ni(OH)2 855.00  Click
Ni 2p3/2 NiO 855.02  Click
Ni 2p3/2 [Ni(SCN)4(P(C6H5)4)2] 855.10  Click
Ni 2p3/2 [NiCl2(P(C4H9)3)2] 855.10  Click
Ni 2p3/2 [NiS2(C7H4NS)2] 855.10  Click
Ni 2p3/2 [Ni(P(SO)(C4H9O)2)2] 855.10  Click
Ni 2p3/2 [Ni3S2(P(C2H5)3)6](+2) 855.10  Click
Ni 2p3/2 [Ni((C6H5CO)(C2H5)NC(S)S)2] 855.20  Click
Ni 2p3/2 NiSO4 855.20  Click
Ni 2p3/2 [NiCl2(C12H7N2)2] 855.20  Click
Ni 2p3/2 [NiCl2(NH2CH2CH2NH2)2].2H2O 855.20  Click
Ni 2p3/2 [NiBr2(NH2CH2CH2NH2)2].2H2O 855.20  Click
Ni 2p3/2 [NiI2(NH2CH2CH2NH2)2].2H2O 855.20  Click
Ni 2p3/2 [N(C2H5]4)2[NiBr4] 855.20  Click
Ni 2p3/2 NiMn2O4 855.20  Click
Ni 2p3/2 (C7H7)[Ni(NCC(S)C(S)CN)2] 855.20  Click
Ni 2p3/2 [Ni(C6H5NNC10H6O)2] 855.30  Click
Ni 2p3/2 NiI2.6H2O 855.30  Click
Ni 2p3/2 [Ni(CH3CNOCNOCH3)2] 855.30  Click
Ni 2p3/2 Ni(OH)2 855.30  Click
Ni 2p3/2 Ni(OH)2 855.30  Click
Ni 2p3/2 NiBr2 855.30  Click
Ni 2p3/2 NiZnMnO4 855.30  Click
Ni 2p3/2 NiPS3 855.30  Click
Ni 2p3/2 [N(C4H9)4]2[Ni(-C(O)C(O)C(S)C(S)-)2] 855.30  Click
Ni 2p3/2 [Ni(C2H4)(P(C6H5)3)2] 855.40  Click
Ni 2p3/2 [NiCl2(CH2(NH2)CH2(NH2))2] 855.40  Click
Ni 2p3/2 [Ni(H2NCH2COO)2].2H2O 855.40  Click
Ni 2p3/2 [Ni(NO3)2(P(C6H5)3)2] 855.40  Click
Ni 2p3/2 [NiCl4(CH3P(C6H5)3)2] 855.40  Click
Ni 2p3/2 NiFe2O4 855.40  Click
Ni 2p3/2 O2/(Cr18Ni82) 855.40  Click
Ni 2p3/2 Ni/Al2O3 855.40  Click
Ni 2p3/2 (Ni(OH)2)3.2H2O 855.40  Click
Ni 2p3/2 [Ni(NO2)2(C9H7N)2] 855.50  Click
Ni 2p3/2 Cs[Ni(B9C2H11)2] 855.50  Click
Ni 2p3/2 Ni(OH)2 855.50  Click
Ni 2p3/2 Ni(OH)2 855.50  Click
Ni 2p3/2 NiO 855.50  Click
Ni 2p3/2 K2[Ni(NHC(O)NHC(O)NH)2] 855.60  Click
Ni 2p3/2 [NiCl3(C12H7N2)3] 855.60  Click
Ni 2p3/2 [Ni(NH2CH2CH2NH2)3]Cl2.2H2O 855.60  Click
Ni 2p3/2 Ni(OH)2 855.60  Click
Ni 2p3/2 Ni(OH)2 855.60  Click
Ni 2p3/2 Ni(OH)2 855.60  Click
Ni 2p3/2 Ni(OH)2 855.60  Click
Ni 2p3/2 NiO 855.60  Click
Ni 2p3/2 O2/S/Ni 855.60  Click
Ni 2p3/2 [(C10H24N4)NiCl2]ClO4 855.60  Click
Ni 2p3/2 Ni2O3.H2O 855.60  Click
Ni 2p3/2 NiOOH 855.60  Click
Ni 2p3/2 [Ni3(C6H5C(O)CHC(O)C6H5)6] 855.70  Click
Ni 2p3/2 K2[Ni(CN)3] 855.70  Click
Ni 2p3/2 [NiCl2(O2)(C10H8N2)] 855.70  Click
Ni 2p3/2 [NiCl2(O2)(C10H8N2)] 855.70  Click
Ni 2p3/2 K4[Ni2(CN)6] 855.70  Click
Ni 2p3/2 NiCO3 855.70  Click
Ni 2p3/2 [Ni(C6H5C(NOH)C(NO)C6H5)2] 855.70  Click
Ni 2p3/2 Ni(OH)2 855.70  Click
Ni 2p3/2 Ni(OH)2 855.70  Click
Ni 2p3/2 [N(CH3)4]2[Ni(NCC(S)C(S)CN)2] 855.70  Click
Ni 2p3/2 O2/Ni/O2/Ni/Ni/V2O3/Cu 855.70  Click
Ni 2p3/2 KNiIO6 855.70  Click
Ni 2p3/2 Ni(OH)2 855.78  Click
Ni 2p3/2 Ni(OH)2 855.78  Click
Ni 2p3/2 [N(CH3)4][NiCl3] 855.80  Click
Ni 2p3/2 [Ni(B9C2H11)2] 855.80  Click
Ni 2p3/2 Ni2O3 855.80  Click
Ni 2p3/2 Ni2O3/Ca0.166Ni0.833 855.80  Click
Ni 2p3/2 Ni/V2O3/Cu 855.80  Click
Ni 2p3/2 (Ni(OH)2)0.75(H2O)0.16(NiCO3)0.09 855.80  Click
Ni 2p3/2 Ni2O3.2H2O 855.82  Click
Ni 2p3/2 [PtCl2((NH2)2CHCH3)2][Ni((NH2)2CHCH3)2](ClO4)4 855.90  Click
Ni 2p3/2 [Ni(HONCHC6H4O)2] 855.90  Click
Ni 2p3/2 [Ni(CH3C(O)CHC(O)CH3)2] 855.90  Click
Ni 2p3/2 [Ni(CH3C(O)CHC(O)CH3)2] 855.90  Click
Ni 2p3/2 [Ni(NH2C6H4COO)2] 855.90  Click
Ni 2p3/2 [NiCl2(C10H8N2)2] 855.90  Click
Ni 2p3/2 Ni(NH3)6Br2 855.90  Click
Ni 2p3/2 Ni(OH)2 855.90  Click
Ni 2p3/2 Ni(OH)2 855.90  Click
Ni 2p3/2 Al2NiO4 855.90  Click
Ni 2p3/2 NiRh2O4 855.90  Click
Ni 2p3/2 O2/Ni/Ni/V2O3/Cu 855.90  Click
Ni 2p3/2 O2/Ni/O2/V/Cu 855.90  Click
Ni 2p3/2 NiOOH 855.92  Click
Ni 2p3/2 [Ni(-C-6H5N3)n] 856.00  Click
Ni 2p3/2 K2[Ni(CN)4] 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 Ni2O3 856.00  Click
Ni 2p3/2 Ni2O3 856.00  Click
Ni 2p3/2 Al2NiO4 856.00  Click
Ni 2p3/2 NiMoO4 856.00  Click
Ni 2p3/2 NiO 856.00  Click
Ni 2p3/2 Ni(OH)2 856.00  Click
Ni 2p3/2 NiWO4 856.10  Click
Ni 2p3/2 Ni2SiO4 856.10  Click
Ni 2p3/2 [N(C4H9)4]2[Ni(-CC(O)CC(S)C(S)-)2] 856.10  Click
Ni 2p3/2 Ni(OH)2 856.10  Click
Ni 2p3/2 [PtBr2((NH2)2CHCH3)2][Ni((NH2)2CHCH3)2](ClO4)4 856.20  Click
Ni 2p3/2 Al2NiO4 856.20  Click
Ni 2p3/2 Al2NiO4 856.20  Click
Ni 2p3/2 NiWO4 856.20  Click
Ni 2p3/2 ((P2O5)0.40(V2O5)0.60)0.85(NiO)0.15 856.20  Click
Ni 2p3/2 NiCl2 856.30  Click
Ni 2p3/2 ((P2O5)0.40(V2O5)0.60)0.90(NiO)0.10 856.30  Click
Ni 2p3/2 Na(NiIO6).H2O 856.40  Click
Ni 2p3/2 K[Ni(NHC(O)NHC(O)NH)2] 856.50  Click
Ni 2p3/2 Ni(C2H3O2)2.4H2O 856.50  Click
Ni 2p3/2 Ni(C2H3O2)2.4H2O 856.50  Click
Ni 2p3/2 Ni(NH3)6(ClO4)2 856.50  Click
Ni 2p3/2 NiSiO3 856.50  Click
Ni 2p3/2 NiO 856.50  Click
Ni 2p3/2 ((P2O5)0.40(V2O5)0.60)0.98(NiO)0.02 856.50  Click
Ni 2p3/2 K2[Ni(CN)4] 856.60  Click
Ni 2p3/2 NiCl2 856.60  Click
Ni 2p3/2 [Ni(C5H5)2] 856.60  Click
Ni 2p3/2 NiCl2.6H2O 856.60  Click
Ni 2p3/2 Ni(OH)2 856.60  Click
Ni 2p3/2 Ni(OH)2 856.60  Click
Ni 2p3/2 [Ni(H2NC(O)NHC(O)NH2)2]Cl2 856.70  Click
Ni 2p3/2 NiCl2 856.70  Click
Ni 2p3/2 NiCl2 856.70  Click
Ni 2p3/2 ((P2O5)0.40(V2O5)0.60)0.95(NiO)0.05 856.70  Click
Ni 2p3/2 NiSO4 856.80  Click
Ni 2p3/2 NiSO4 856.80  Click
Ni 2p3/2 Ni(OH)2/Ca0.166Ni0.833 856.80  Click
Ni 2p3/2 Ni(NO3)2.6H2O 856.90  Click
Ni 2p3/2 K4[Ni(NO2)6] 856.90  Click
Ni 2p3/2 [N(C4H9)4]2[Ni((-CC(O)C(S)C(S)C(O)-)C(CN)2)2] 856.90  Click
Ni 2p3/2 [NiCl2((C6H5)3P)2] 857.00  Click
Ni 2p3/2 Ni2(NO3)2 857.00  Click
Ni 2p3/2 Al2NiO4 857.00  Click
Ni 2p3/2 Al2NiO4 857.00  Click
Ni 2p3/2 (B9C2H11)2Ni 857.00  Click
Ni 2p3/2 Ni2(NO3)2 857.10  Click
Ni 2p3/2 NiSO4 857.15  Click
Ni 2p3/2 NiClO4.6H2O 857.20  Click
Ni 2p3/2 [Ni(B9C2H11)2] 857.20  Click
Ni 2p3/2 NiO 857.20  Click
Ni 2p3/2 Ni(CN)2 857.30  Click
Ni 2p3/2 NiSO4 857.30  Click
Ni 2p3/2 NiF2 857.40  Click
Ni 2p3/2 NiF2.4H2O 857.50  Click
Ni 2p3/2 (NH4)2[NiF4] 857.70  Click
Ni 2p3/2 NiF2 858.20  Click
Ni 2p3/2 Ni/Ca0.166Ni0.833 858.70  Click
Ni 2p3/2 K2NiF6 861.00  Click

 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions  

for XPS Research Studies on Nickel Materials

 


 

Expert Knowledge Explanations

 Periodic Table 


 

Nickel Chemical Compounds

 

Peak-fits and Overlays of Chemical State Spectra

Pure Nickel (Nio):  Ni (2p3/2)
Cu (2p3/2) BE = 932.6 eV
NiO:  Ni (2p3/2)
C (1s) BE = 285.0 eV
NiF2: Ni (2p3/2)
C (1s) BE = 284.9 eV (No Flood Gun)

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Ni (2p3/2) Spectra shown Above

C (1s) BE = 285.0 eV

 

Chemical Shift between Ni and NiO:  1.34 eV
 Chemical Shift between Ni and NiO:  5.55 eV

 

 Periodic Table 


 

 

Nickel Oxide (NiO)
fresh exposed bulk of single crystal <100>

Survey Spectrum from NiO
Flood gun is ON, C (1s) BE = 285.0 eV
Ni (2p3/2) Chemical State Spectrum from NiO
Flood gun is ON, C (1s) BE = 285.0 eV

 
O (1s) Chemical State Spectrum from NiO
Flood gun is ON, C (1s) BE = 285.0 eV
C (1s) Chemical State Spectrum from NiO
Flood gun is ON, C (1s) BE = 285.0 eV

 
Ni (3s) Chemical State Spectrum from NiF2
Flood gun is ON, C (1s) BE = 285.0 eV
powder
Ni (3s) Chemical State Spectrum from NiO
Flood gun is ON, C (1s) BE = 285.0 eV
Freshly cleaved to expose bulk

  .
Valence Band Spectrum from NiO
Flood gun is ON, C (1s) BE = 285.0 eV
Freshly cleaved to expose bulk
Auger Signals from NiO
Flood gun is ON, C (1s) BE = 285.0 eV
Freshly cleaved to expose bulk


Shake-up Features
for NiO

 


 

Multiplet Splitting Features for
Nickel Compounds

Ni metal – NO Splitting for Ni (3s) NiO Compound – Multiplet Splitting Peaks for Ni (3s)

 

 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

 


 

Nickel Chemical Compounds

 

   
   
   
   
   
   
   
   
   
   

 Periodic Table 



 

 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of Nickel – NiO

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

 Periodic Table 

 


 

 

Flood Gun Effect on Native Oxide of Nickel

 

Native Oxide of Nickel Sheet – Sample GROUNDED
versus
Native Oxide of Nickel Sheet – Sample FLOATING

 


 

Native Oxide of Nickel Sheet – Sample Grounded

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Ni (2p3/2) O (1s) C (1s)
     
 Periodic Table     

 

Native Oxide of Nickel Sheet – Sample Floating

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Ni (2p3/2) O (1s) C (1s)
     
 Periodic Table     

 Peri

 


 

XPS Study of UHV Gas Captured by Freshly Ion Etched Nickel
 
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Nio

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
 
 
 
Ni (2p3/2) Signal
 O (1s) Signal C (1s) Signal
     
 
 
Copyright ©:  The XPS Library
 

 

AES Study of UHV Gas Captured by Freshly Ion Etched Nickel

Nickel sheet was ion etched and allowed to react with residual UHV gases overnight – ~14 hr run.

Ni (LMM) Signal
Ni at front -> NiOx at rear 
Ni KE = 841.8 eV,    NiO KE = 844.7 eV
O (KLL) Signal
Ni at front -> NiOx at rear 
O KE = 508.0 eV
C (KLL) Signal
Ni at front -> NiOx at rear 
C KE = 266.3 eV

     

 

 

Nickel Alloys


CuNi, CoNi

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 


XPS Facts, Guidance & Information

 Periodic Table 

    Element   Nickel (Ni)
 
    Primary XPS peak used for Peak-fitting:   Ni (2p)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for “p” orbital, ΔBE = 17.3 eV
 
    Binding Energy (BE) of Primary XPS Signal:   852.65eV
 
    Scofield Cross-Section (σ) Value:   Ni (2p3/2) = 14.61      Ni (2p1/2) = 7.57
 
    Conductivity:   Ni resistivity =  
Native Oxide suffers Differential Charing
 
    Range of Ni (2p) Chemical State BEs:   852 – 855 eV range   (Nio to NiF2)  
    Signals from other elements that overlap
Ni (2p) Primary Peak:
  xx (xx)  
    Bulk Plasmons:   ~xx eV above peak max for pure  
    Shake-up Peaks:   xx  
    Multiplet Splitting Peaks:   xx  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Ni (2p)

  • FWHM (eV) of Ni (2p3/2) for Pure Nio ~1.0 eV using 50 eV Pass Energy after ion etching:
  • FWHM (eV) of Ni (2p3/2) for NiO xtal:  ~1.2 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  852.65 eV for Ni(2p3) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Ni (2p):  xxxx

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Nickel

  • Nickel develops a thick native oxide due to the reactive nature of clean Nickel .
  • The native oxide of Ni Ox is xxx nm thick.
  • Nickel thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Nickel forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal Ni (2p) peak as well as Ni (3p).
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Nickel (Ni)

  • Conductivity:  Nickel readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Ni (2p3) at 852 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  840 – 870 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  830 – 930 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching Ni and various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature
 
from Thermo-Scientific Website
 

Interpretation of XPS spectra

  • Ni2p peak has significantly split spin-orbit components (Δmetal=17.3eV).
  • Ni metal spectrum has complex shape.
    • Mixture of core level and satellite features.
    • Satellite features not to be confused with oxidized nickel peaks.
  • Ni compounds can also have complex, multiplet-split peaks.

XPS spectrum of nickel oxide

XPS spectrum of nickel metal



End of File