AlN BN CrN CuN Fe4N GaN GeN InN Li3N NbN
Si3N4 TaN TiN VN WN ZrN CuCN SiCN TiCN K3Fe(CN)6
InGaN PAN n-Octylamine Kapton NH4BF4 NH4Br NH4Cl Cu(NO3)2 Tl(NO3) Basic

XPS Spectra
Nitrogen (N) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Lithium Nitride  (Li3N – very air sensitive)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from Li3N
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag (3d5/2) FWHM = 1.3 eV
 

 Periodic Table  → Six (6) BE Tables
N (1s) Spectrum from Li3N Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
N (1s) Spectrum from Li3N Peak-fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
Li (1s) Spectrum from Li3N Raw – Extended Range
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Li (1s) Spectrum from Li3N Raw – Vertically Expanded
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
 


 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from Li3N – Peak-fit – As measured 
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 284.37 eV, Ag FWHM = 0.75 eV
C (1s) Spectrum from Li3N Peak-Fit – Corrected
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
O (1s) Spectrum from Li3N Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
O (1s) Spectrum from Li3N Peak-Fit
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
 

 Periodic Table  → Six (6) BE Tables
N (2s) Spectrum from Li3N Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
Valence Band Signals from Li3N Raw
Freshly exposed bulk, Flood gun is ON, C (1s) BE = 285.0 eV, Ag FWHM = 0.75 eV
na na

 
Overlays


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Cr), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Cr), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Cr), PEs = 100, 120, 140, 160, 180 and 200 eV


 

Six (6) Chemical State Tables of N (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

 Periodic Table 


Table #1

N (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or
NIST Average BE
Largest BE Hydrocarbon C (1s) BE  Source
N 7 N-Ge 396.5 eV 285.0 eV The XPS Library
N 7 N-In 396.7 eV 285.0 eV The XPS Library
N 7 N-Zr 396.9 eV 285.0 eV The XPS Library
N 7 N-Cr 397.1 eV 285.0 eV The XPS Library
N 7 N-Si 397.1 eV 397.8 eV 285.0 eV The XPS Library
N 7 N-Nb 397.2 eV 285.0 eV The XPS Library
N 7 N-Ti 397.2 eV 397.5 eV 285.0 eV The XPS Library
N 7 N-V 397.2 eV 285.0 eV The XPS Library
N 7 Si3N4 (N*9) 397.4 eV 398.6 eV Avg BE – NIST
N 7 N-Ga 397.5 eV 285.0 eV The XPS Library
N 7 N-Al 397.6 eV 398.0 eV 285.0 eV The XPS Library
N 7 N-Fe 397.7 eV 285.0 eV The XPS Library
N 7 N-W 397.7 eV 398.1 eV 285.0 eV The XPS Library
N 7 SiCN 398.0 eV 285.0 eV The XPS Library
N 7 KCN (N*3) 398.1 eV 399.6 eV Avg BE – NIST
N 7 N-B 398.1 eV 398.3 eV 285.0 eV The XPS Library
N 7 N-B (N*6) 398.1 eV 398.4 eV Avg BE – NIST
N 7 N-Ta 398.2 eV 398.3 eV 285.0 eV The XPS Library
N 7 NaN-N2 (N*4) 398.5 eV 400.1 eV Avg BE – NIST
N 7 CuCN 398.7 eV 285.0 eV The XPS Library
N 7 N-C  amines     (R2NH2) 399.1 eV 400.2 eV 285.0 eV The XPS Library
N 7 N nitrile  (CN) PAN polymer 399.6 eV 285.0 eV The XPS Library
N 7 N-C=O 399.7 eV 400.0 eV 285.0 eV The XPS Library
N 7 NH4-Cl (N*3) 400.8 eV 401.7 eV Avg BE – NIST
N 7 N-O 401.2 eV 402.4 eV 285.0 eV The XPS Library
N 7 (NH4)2-SO4 (N*1) 401.3 eV One BE – NIST
N 7 NH4+,NR4+ 401.4 eV 402.4 eV 285.0 eV The XPS Library
N 7 Me4NCl (N*4) 401.5 eV 402.3 eV Avg BE – NIST
N 7 NH4-NO3 (N*4) 401.9 eV 402.3 eV Avg BE – NIST
N 7 NaN2-N (N*4) 402.8 eV 404.5 eV Avg BE – NIST
N 7 M-NO2 (N*7) 403.3 eV 404.9 eV Avg BE – NIST
N 7 N-O2  (nitrocellulose) 405.4 eV 285.0 eV The XPS Library
N 7 NO3-NH4 (N*4) 405.5 eV 407.3 eV Avg BE – NIST
N 7 M-NO3 (N*14) 407.2 eV 408.1 eV Avg BE – NIST
N 7 N-O3 408.2 eV 285.0 eV The XPS Library

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpsLibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

N (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

N (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy N (1s) / eV
Metal nitrides ~397
NSi3 (Si3N4) 398.0
NSi2O 399.9
NSiO2 402.5
C-NH2 ~400
Nitrate >405

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

N (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

N (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

 

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
N 1s Nitride 397.3 ±1.1 396.2 398.3
N 1s Si3N4 397.5 ±0.4 397.1 397.8
N 1s BN 398.1 ±0.2 397.9 398.3
N 1s Azide (N*NN*) 398.4 ±0.5 397.9 398.8
N 1s Cyanides 398.9 ±1.5 397.4 400.3
N 1s NH3 399.2 ±0.5 398.7 399.7
N 1s Organic Matrix 399.9 ±1.1 398.8 401.0
N 1s Ammonium Salt 401.8 ±1.4 400.4 403.2
N 1s Azide (NN*N) 402.8 ±0.5 402.3 403.2
N 1s Nitrites 404.0 ±0.9 403.1 404.8
N 1s Nitrates 407.6 ±0.6 407.0 408.2

 Periodic Table 



 
 

Histograms of NIST BEs for N (1s) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  397.1 eV for pure TiN based on 9 literature BEs Histogram indicates:  397.8 eV for Si3N4 based on 30 literature BEs



Histogram indicates:  398.3 eV for pure BN based on 7 literature BEs Histogram indicates:  401.4 eV for pure NH4Cl based on 4 literature BEs



Histogram indicates:  404.2 eV for pure -NO2 based on 5 literature BEs Histogram indicates:  406.6 eV for pure -NO3 based on 6 literature BEs


Table #6


NIST Database of N (1s) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

 

To view the NIST table of BEs for N (1s) click on the link above.

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs