AlN BN CrN CuN Fe4N GaN GeN InN Li3N NbN
Si3N4 TaN TiN VN WN ZrN CuCN SiCN TiCN K3Fe(CN)6
InGaN PAN n-Octylamine Kapton NH4BF4 NH4Br NH4Cl Cu(NO3)2 Tl(NO3) Basic

XPS Spectra
Nitrogen (N) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Niobium Nitride  (NbN)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from NbN
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag (3d5/2) FWHM = 1.3 eV


 Periodic Table  → Six (6) BE Tables
Nb (3d) Spectrum from NbN Raw
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
Nb (3d) Spectrum from NbN  Peak-Fit
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables
N (1s) Spectrum from NbN  Raw
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
N (1s) Spectrum from NbN  Peak-Fit
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
O (1s) Spectrum from NbN  Raw
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
O (1s) Spectrum from NbN  Peak-Fit
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from NbN  Raw
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
Valence Band Spectrum from NbN  raw
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
na

 
Overlays
 Periodic Table  → Six (6) BE Tables
Valence Band Spectra – Overlay of Nbo and NbN 
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV
Nb (3d) SpectraOverlay of Nbo and NbN 
Sample was ion etched. Flood gun is OFF (sample is conductive), Ag FWHM = 0.75 eV


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Sc), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 120, 140, 160, 180 and 200 eV


End-of-Transmission-Function-Tests

 



Six (6) Chemical State Tables of N (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

 Periodic Table 


Table #1

N (1s) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or
NIST Average BE
Largest BE Hydrocarbon C (1s) BE  Source
N 7 N-Ge 396.5 eV 285.0 eV The XPS Library
N 7 N-In 396.7 eV 285.0 eV The XPS Library
N 7 N-Zr 396.9 eV 285.0 eV The XPS Library
N 7 N-Cr 397.1 eV 285.0 eV The XPS Library
N 7 N-Si 397.1 eV 397.8 eV 285.0 eV The XPS Library
N 7 N-Nb 397.2 eV 285.0 eV The XPS Library
N 7 N-Ti 397.2 eV 397.5 eV 285.0 eV The XPS Library
N 7 N-V 397.2 eV 285.0 eV The XPS Library
N 7 Si3N4 (N*9) 397.4 eV 398.6 eV Avg BE – NIST
N 7 N-Ga 397.5 eV 285.0 eV The XPS Library
N 7 N-Al 397.6 eV 398.0 eV 285.0 eV The XPS Library
N 7 N-Fe 397.7 eV 285.0 eV The XPS Library
N 7 N-W 397.7 eV 398.1 eV 285.0 eV The XPS Library
N 7 SiCN 398.0 eV 285.0 eV The XPS Library
N 7 KCN (N*3) 398.1 eV 399.6 eV Avg BE – NIST
N 7 N-B 398.1 eV 398.3 eV 285.0 eV The XPS Library
N 7 N-B (N*6) 398.1 eV 398.4 eV Avg BE – NIST
N 7 N-Ta 398.2 eV 398.3 eV 285.0 eV The XPS Library
N 7 NaN-N2 (N*4) 398.5 eV 400.1 eV Avg BE – NIST
N 7 CuCN 398.7 eV 285.0 eV The XPS Library
N 7 N-C  amines     (R2NH2) 399.1 eV 400.2 eV 285.0 eV The XPS Library
N 7 N nitrile  (CN) PAN polymer 399.6 eV 285.0 eV The XPS Library
N 7 N-C=O 399.7 eV 400.0 eV 285.0 eV The XPS Library
N 7 NH4-Cl (N*3) 400.8 eV 401.7 eV Avg BE – NIST
N 7 N-O 401.2 eV 402.4 eV 285.0 eV The XPS Library
N 7 (NH4)2-SO4 (N*1) 401.3 eV One BE – NIST
N 7 NH4+,NR4+ 401.4 eV 402.4 eV 285.0 eV The XPS Library
N 7 Me4NCl (N*4) 401.5 eV 402.3 eV Avg BE – NIST
N 7 NH4-NO3 (N*4) 401.9 eV 402.3 eV Avg BE – NIST
N 7 NaN2-N (N*4) 402.8 eV 404.5 eV Avg BE – NIST
N 7 M-NO2 (N*7) 403.3 eV 404.9 eV Avg BE – NIST
N 7 N-O2  (nitrocellulose) 405.4 eV 285.0 eV The XPS Library
N 7 NO3-NH4 (N*4) 405.5 eV 407.3 eV Avg BE – NIST
N 7 M-NO3 (N*14) 407.2 eV 408.1 eV Avg BE – NIST
N 7 N-O3 408.2 eV 285.0 eV The XPS Library

 

 

 

 

 

 

 

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale calibration expects Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpsLibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

N (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

N (1s) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy N (1s) / eV
Metal nitrides ~397
NSi3 (Si3N4) 398.0
NSi2O 399.9
NSiO2 402.5
C-NH2 ~400
Nitrate >405

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

N (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

N (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

 

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
N 1s Nitride 397.3 ±1.1 396.2 398.3
N 1s Si3N4 397.5 ±0.4 397.1 397.8
N 1s BN 398.1 ±0.2 397.9 398.3
N 1s Azide (N*NN*) 398.4 ±0.5 397.9 398.8
N 1s Cyanides 398.9 ±1.5 397.4 400.3
N 1s NH3 399.2 ±0.5 398.7 399.7
N 1s Organic Matrix 399.9 ±1.1 398.8 401.0
N 1s Ammonium Salt 401.8 ±1.4 400.4 403.2
N 1s Azide (NN*N) 402.8 ±0.5 402.3 403.2
N 1s Nitrites 404.0 ±0.9 403.1 404.8
N 1s Nitrates 407.6 ±0.6 407.0 408.2

 Periodic Table 



 
 

Histograms of NIST BEs for N (1s) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  397.1 eV for pure TiN based on 9 literature BEs Histogram indicates:  397.8 eV for Si3N4 based on 30 literature BEs



Histogram indicates:  398.3 eV for pure BN based on 7 literature BEs Histogram indicates:  401.4 eV for pure NH4Cl based on 4 literature BEs



Histogram indicates:  404.2 eV for pure -NO2 based on 5 literature BEs Histogram indicates:  406.6 eV for pure -NO3 based on 6 literature BEs


Table #6


NIST Database of N (1s) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

 

To view the NIST table of BEs for N (1s) click on the link above.

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

Six (6) Chemical State Tables of Nb (3d5/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (3d5/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron Sample was not ground into powder. Flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron Sample was not ground into powder. Flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron Sample was not ground into powder. Flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this Sample was not ground into powder. Flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron Sample was not ground into powder. Flood gun, the instrument operator should adjust the voltage and the XY position of the electron Sample was not ground into powder. Flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Nb (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Nb 41 Nb (N*13) 201.5 eV 202.6 eV 284.8 eV Avg BE – NIST
Nb 41 Nb – element 202.1 eV 285.0 eV The XPS Library
Nb 41 Nb-O (N*3) 202.8 eV 204.7 eV 284.8 eV Avg BE – NIST
Nb 41 Nb-N 203.1 eV 285.0 eV The XPS Library
Nb 41 Nb-Se2 (N*1) 203.4 eV 284.8 eV Avg BE – NIST
Nb 41 Nb-N (N*5) 203.5 eV 203.8 eV 284.8 eV Avg BE – NIST
Nb 41 NbC (N*1) 203.7 eV 284.8 eV Avg BE – NIST
Nb 41 Nb-C 203.8 eV 285.0 eV The XPS Library
Nb 41 NbN2 (N*4) 205.2 eV 207.6 eV 284.8 eV Avg BE – NIST
Nb 41 KNbO3 (N*1) 206.5 eV 284.8 eV Avg BE – NIST
Nb 41 NaNbO3 (N*2) 206.6 eV 284.8 eV Avg BE – NIST
Nb 41 NbI5 (N*1) 207.01 wV 284.8 eV Avg BE – NIST
Nb 41 LiNbO3 (N*1) 207.1 eV 284.8 eV Avg BE – NIST
Nb 41 NbBr5 (N*1) 207.1 eV 284.8 eV Avg BE – NIST
Nb 41 Nb2O5 (N*14) 207.2 eV 208.2 eV 284.8 eV Avg BE – NIST
Nb 41 Nb-2O5 207.4 eV 285.0 eV The XPS Library
Nb 41 Nb-S2 (N*1) 207.7 eV 284.8 eV Avg BE – NIST
Nb 41 NbCl5 (N*1) 208.0 eV 284.8 eV Avg BE – NIST
Nb 41 K2NbF7 (N*1) 209.4 eV 285.0 eV Avg BE – NIST
Nb 41 Nb-(OH)2 285.0 eV The XPS Library
Nb 41 NbCO3 285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (3d5/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Nb (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Nb (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Nb (3d5/2)
Nb metal 202.4
Nb2O5 207.1

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Nb (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Nb (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Nb 3d5/2 Nb 202.1 ±0.4 201.7 202.5
Nb 3d5/2 NbN 203.7 ±0.3 203.4 204.0
Nb 3d5/2 NbO 203.8 ±1.0 202.8 204.8
Nb 3d5/2 Cl2(Nb6Cl12)(Pr3P)4 204.6 ±0.3 204.3 204.9
Nb 3d5/2 Cl2(Nb6Cl12)(Me2SO)4 204.6 ±0.3 204.3 204.9
Nb 3d5/2 Br6(Nb6Cl12)(Bu4N)2 204.8 ±0.3 204.5 205.0
Nb 3d5/2 Ca2Nb2O7 206.7 ±0.3 206.4 206.9
Nb 3d5/2 CaNb2O6 206.7 ±0.3 206.4 207.0
Nb 3d5/2 LiNbO3 207.1 ±0.2 206.9 207.3
Nb 3d5/2 Nb2O5 207.5 ±0.3 207.2 207.8

 

 Periodic Table 



 
 

Histograms of NIST BEs for Nb (3d5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  202.2 eV for Nb based on 13 literature BEs Histogram indicates:  207.4 eV for Nb2O5 based on 15 literature BEs

Table #6


NIST Database of Nb (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
Nb 3d5/2 Nb 201.50  Click
Nb 3d5/2 Nb 201.60  Click
Nb 3d5/2 Nb 201.80  Click
Nb 3d5/2 Nb 202.10  Click
Nb 3d5/2 Nb 202.20  Click
Nb 3d5/2 Nb 202.20  Click
Nb 3d5/2 Nb 202.20  Click
Nb 3d5/2 AlOx/Nb/Si 202.20  Click
Nb 3d5/2 Nb 202.26  Click
Nb 3d5/2 O2/Ce/Nb 202.30  Click
Nb 3d5/2 O2/Er/Nb 202.30  Click
Nb 3d5/2 O2/Nb 202.30  Click
Nb 3d5/2 O2/Pr/Nb 202.30  Click
Nb 3d5/2 O2/Tb/Nb 202.30  Click
Nb 3d5/2 NbOx/Nb 202.30  Click
Nb 3d5/2 Nb 202.31  Click
Nb 3d5/2 Nb 202.40  Click
Nb 3d5/2 Nb 202.40  Click
Nb 3d5/2 Nb 202.40  Click
Nb 3d5/2 Nb 202.40  Click
Nb 3d5/2 Nb 202.50  Click
Nb 3d5/2 Nb 202.60  Click
Nb 3d5/2 NbC 202.70  Click
Nb 3d5/2 NbC 202.70  Click
Nb 3d5/2 Nb3Te4 202.80  Click
Nb 3d5/2 NbO 202.80  Click
Nb 3d5/2 SnNbS3 202.80  Click
Nb 3d5/2 NbO0.2/Nb 202.90  Click
Nb 3d5/2 Nb3Se4 203.00  Click
Nb 3d5/2 [Nb6I8(CH3NH2)6] 203.10  Click
Nb 3d5/2 NbN 203.10  Click
Nb 3d5/2 NbN0.93 203.10  Click
Nb 3d5/2 NbH 203.20  Click
Nb 3d5/2 NbHx 203.20  Click
Nb 3d5/2 NbN0.067 203.20  Click
Nb 3d5/2 Nb3Te4.1 203.20  Click
Nb 3d5/2 Nb3Te2.8As0.9 203.20  Click
Nb 3d5/2 Nb3Te3.8As0.4 203.20  Click
Nb 3d5/2 NbSe2 203.40  Click
Nb 3d5/2 (BiS)1.09NbS2 203.40  Click
Nb 3d5/2 NbN 203.50  Click
Nb 3d5/2 NbN 203.50  Click
Nb 3d5/2 NbN 203.50  Click
Nb 3d5/2 NbS2 203.50  Click
Nb 3d5/2 Nb6I11 203.52  Click
Nb 3d5/2 (SnS)1.17NbS2 203.60  Click
Nb 3d5/2 HNb6I11 203.68  Click
Nb 3d5/2 NbO 203.70  Click
Nb 3d5/2 NbC 203.70  Click
Nb 3d5/2 NbN0.51 203.70  Click
Nb 3d5/2 (PbS)1.14NbS2 203.70  Click
Nb 3d5/2 NbN 203.80  Click
Nb 3d5/2 NbTe4 203.80  Click
Nb 3d5/2 NbO/Nb 203.80  Click
Nb 3d5/2 Nb3N4 203.90  Click
Nb 3d5/2 NbN0.99 204.09  Click
Nb 3d5/2 Nb3N4 204.10  Click
Nb 3d5/2 NbN0.87 204.20  Click
Nb 3d5/2 NbN(1-y)O(y)/NbN 204.25  Click
Nb 3d5/2 NbN(1-y)O(y) 204.30  Click
Nb 3d5/2 NbN(1-y)O(y) 204.40  Click
Nb 3d5/2 NbC0.8O0.2 204.40  Click
Nb 3d5/2 Nb3I8 204.50  Click
Nb 3d5/2 [Nb6Cl12Cl2(SO(CH3)2)4] 204.60  Click
Nb 3d5/2 (P(C3H7)3)4[(NbCl12)Cl2] 204.60  Click
Nb 3d5/2 NbSe2 204.60  Click
Nb 3d5/2 [Nb6Cl12(H2O)4]Cl2.4H2O 204.70  Click
Nb 3d5/2 [N(C2H5)4]3[NbC12]Cl6 204.70  Click
Nb 3d5/2 [N(C4H9)4]2[Nb6Cl12Br6] 204.70  Click
Nb 3d5/2 NbO 204.70  Click
Nb 3d5/2 (PbSe)1.12(NbSe2)2 204.70  Click
Nb 3d5/2 BaNb0.8S3-x 204.70  Click
Nb 3d5/2 BaNbS3 204.80  Click
Nb 3d5/2 NbO2 205.20  Click
Nb 3d5/2 NbNO 205.50  Click
Nb 3d5/2 NbNO/NbN 205.55  Click
Nb 3d5/2 NbNO 205.55  Click
Nb 3d5/2 NbO2 205.70  Click
Nb 3d5/2 NbO2/Nb 205.80  Click
Nb 3d5/2 NbCO 205.80  Click
Nb 3d5/2 NbI4 205.90  Click
Nb 3d5/2 NbO2 206.10  Click
Nb 3d5/2 KNbO3 206.50  Click
Nb 3d5/2 RhNbO4 206.50  Click
Nb 3d5/2 BaNbO3 206.50  Click
Nb 3d5/2 Nb2O5 206.60  Click
Nb 3d5/2 NaNbO3 206.60  Click
Nb 3d5/2 NaNbO3 206.60  Click
Nb 3d5/2 Ca2Nb2O7 206.70  Click
Nb 3d5/2 BaNb0.8S3-x 206.70  Click
Nb 3d5/2 CaNb2O6 206.80  Click
Nb 3d5/2 Nb2N(2-y)O(3+y) 206.80  Click
Nb 3d5/2 UNb3O10.17 206.80  Click
Nb 3d5/2 UNb3O10.34 206.80  Click
Nb 3d5/2 Sr0.90NbO3 206.80  Click
Nb 3d5/2 Sr0.80NbO3 206.80  Click
Nb 3d5/2 Sr0.85NbO3 206.80  Click
Nb 3d5/2 Nb2O5 206.90  Click
Nb 3d5/2 Nb2N(2-y)O(3+y)/NbN 206.90  Click
Nb 3d5/2 UNb3O10 206.90  Click
Nb 3d5/2 Nb2O5 207.00  Click
Nb 3d5/2 CdNb2O6 207.00  Click
Nb 3d5/2 Nb2N(2-y)O(3+y)/NbN 207.00  Click
Nb 3d5/2 UNb4O12 207.00  Click
Nb 3d5/2 BaNbS3 207.00  Click
Nb 3d5/2 Nb2O5 207.00  Click
Nb 3d5/2 Nb2O5 207.00  Click
Nb 3d5/2 Nb2O5 207.00  Click
Nb 3d5/2 NbBr5 207.10  Click
Nb 3d5/2 LiNbO3 207.10  Click
Nb 3d5/2 NbI5 207.10  Click
Nb 3d5/2 Nb2O5 207.10  Click
Nb 3d5/2 Nb2O5 207.10  Click
Nb 3d5/2 Nb2O5 207.20  Click
Nb 3d5/2 Nb2O5 207.20  Click
Nb 3d5/2 Nb2O5 207.20  Click
Nb 3d5/2 Nb2O5 207.20  Click
Nb 3d5/2 H0.2Nb2O5 207.20  Click
Nb 3d5/2 LiNbO3 207.30  Click
Nb 3d5/2 Nb2O5 207.30  Click
Nb 3d5/2 Nb2O5 207.40  Click
Nb 3d5/2 O2/Ce/Nb 207.40  Click
Nb 3d5/2 O2/Er/Nb 207.40  Click
Nb 3d5/2 O2/Nb 207.40  Click
Nb 3d5/2 O2/Pr/Nb 207.40  Click
Nb 3d5/2 O2/Tb/Nb 207.40  Click
Nb 3d5/2 UNb2O7 207.40  Click
Nb 3d5/2 Nb2O5 207.50  Click
Nb 3d5/2 Nb2O5 207.50  Click
Nb 3d5/2 Nb2O5 207.55  Click
Nb 3d5/2 Nb2O5 207.55  Click
Nb 3d5/2 Nb2O5/Nb 207.55  Click
Nb 3d5/2 Nb2O5/NbN 207.55  Click
Nb 3d5/2 Nb2O5/NbN 207.55  Click
Nb 3d5/2 NbO2 207.60  Click
Nb 3d5/2 Nb2O5 207.60  Click
Nb 3d5/2 Nb2O5 207.60  Click
Nb 3d5/2 Nb2O5 207.60  Click
Nb 3d5/2 Nb2O5 207.60  Click
Nb 3d5/2 NbS2 207.70  Click
Nb 3d5/2 Nb99ZrOx 207.70  Click
Nb 3d5/2 NbOx/Nb 207.70  Click
Nb 3d5/2 NbCl5 208.00  Click
Nb 3d5/2 Nb2O5 208.10  Click
Nb 3d5/2 Nb2O5 208.20  Click
Nb 3d5/2 K2NbF7 209.40

 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table