Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                        XPS Database of Polymers                       Six (6) BE Tables


 

Phosphorus (P)

 

Autunite – Ca(UO2)2(PO4)2 · 10-12H2O Phosphorus – Po Xenotime – Y(PO4)

 

  Page Index
  • Expert Knowledge Explanations


Phosphorus, Po
Peak-fits, BEs, FWHMs, and Peak Labels


  .
Phosphorus (Po)
P (2p) Spectrum – raw spectrum
Phosphorus (Po)
Peak-fit of P (2p) Spectrum (w/o asymm)

 Periodic Table – HomePage  
Phosphorus (Po
P (2p-2s) Spectrum
extended range 
Phosphorus (Po
Peak-fit of P (2p) Spectrum
assuming 2 species of Po

  .
Phosphorus (Po)
P (2s) Spectrum – raw spectrum
Phosphorus (Po)
Peak-fit of P (2s) Spectrum (w/o asymm)

 

Survey Spectrum of Phosphorus (Po)
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Phosphorus, (Po

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
B (1s) overlaps P (2s) 188 1.18 30.5
  P (2p1/2) 131.38 0.403 31.5
Si (2p) satellites overlap P (2p3/2) 130.54 0.789 31.5
  P (3s) 16 0.1116 33.7
  P (3p) 10 0.0368 xxx

σ:  abbreviation for the term Scofield Photoionization Cross-Section which is used with IMFP and TF to produce RSFs and atom% quantitation

Plasmon Peaks

Energy Loss Peaks

Auger Peaks

Energy Loss    Intrinsic Plasmon Peak:  ~xx eV above peak max
Expected Bandgap for InP:  ~0.5 eV  (https://materialsproject.org/)
Work Function for P:  xx eV

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 


 

Valence Band Spectra from InP & GaP
Indium Phosphide  and Gallium Phosphide
 Fresh exposed bulk of crystalline wafers

InP (fresh bulk) Valence Band Spectrum GaP (fresh bulk) Valence Band Spectrum
Overlay ofValence Band Spectra
from GaP (fresh bulk) and InP (fresh bulk) of wafers

 

Plasmon Peaks from Po 
 Fresh exposed bulk produced by extensive Ar+ ion etching

P (2p) – Extended Range Spectrum P (2p) – Extended Range Spectrum – Vertically Zoomed
 Periodic Table 

 

P (LMM) Auger Peaks from Po 
 Fresh exposed bulk produced by extensive Ar+ ion etching

Po – main Auger peak Po – peak-fit of Auger peak
 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

 

   

 

Side-by-Side Comparison of

KH2PO4 (single crystal, exposed bulk) &
NaH
2PO4 (ground crystallites)
Peak-fits, BEs, FWHMs, and Peak Labels

KH2PO4 (fresh exposed bulk) NaH2PO4  (fresh ground crystallites)
P (2p) spectrum
Flood Gun ON, 
As-Measured, C (1s) at 285.0 eV, Aligned with NaH2PO4 data
P (2p) spectrum
Flood Gun ON, 
As-Measured, C (1s) at 285.0 eV, Aligned with KH2PO4 data


 
KH2PO4 (fresh exposed bulk) NaH2PO4  (fresh ground crystallites)
C (1s) spectrum
Flood Gun ON, 
As-Measured, C (1s) at 285.0 eV, Aligned with NaH2PO4 data

C (1s) spectrum
Flood Gun ON, 
As-Measured, C (1s) at 285.0 eV, Aligned with KH2PO4 data


 Periodic Table 

  .
KH2PO(fresh exposed bulk) NaH2PO(fresh ground crystallites)
O (1s) spectrum
Flood Gun ON, 
As-Measured, C (1s) at 285.0 eV, Aligned with NaH2PO4 data

O (1s) spectrum
Flood Gun ON, 
As-Measured, C (1s) at 285.0 eV, Aligned with KH2PO4 data

 Periodic Table

 


 

 

Survey Spectrum of Potassium di-hydrogen phosphate, KH2PO4
(single crystal, freshly exposed bulk)

with Peaks Integrated, Assigned and Labelled

 

 Periodic Table 


 

 

Survey Spectrum of Sodium di-hydrogen phosphate, NaH2PO4
(crystallites, freshly ground)

with Peaks Integrated, Assigned and Labelled

 Periodic Table  


 

Comaprisons of P (2p) and O (1s) Spectra for

KH2PO4 and NaH2PO4

 

 Overlay of  KH2PO4 and NaH2PO4
 P (2p) BE
C (1s) = 285.0 eV (Flood gun ON)
Chemical Shift:  0..24 eV
Overlay of  KH2PO4 and NaH2PO4
O (1s) BE
C (1s) = 285.0 eV (Flood gun ON)
Chemical Shift:  0.23 eV
 Periodic Table  Copyright ©:  The XPS Library 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
KH2PO4 and NaH2PO4

Valence Band Spectrum of KH2PO4 
Flood gun is ON,  Charge referenced so C (1s) = 285.0 eV
Valence Band Spectrum of NaH2PO4
Flood gun is ON,  Charge referenced so C (1s) = 285.0 eV


Overlay of Valence Band Spectra for
KH2PO4 and NaH2PO4

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Phosphorus Minerals, Gemstones, and Chemical Compounds

 

Variscite – AlPO4-2H2O Lithiophilite – LiMnPO4 Kingite – Al3(PO4)2F2(OH) · 7H2O Libethenite – Cu2(PO4)(OH)

 Periodic Table 



 

 

Six (6) Chemical State Tables of P (2p) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

P (2p3/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
P 15 BP (N*1) 130.3 eV   284.8 eV Avg BE – NIST
P 15 CuP2 (N*2) 129.6 eV 129.7 eV 284.8 eV Avg BE – NIST
P 15 ScP (N*1) 127.8 eV   284.8 eV Avg BE – NIST
P 15 InP 128.7 eV 128.9 eV 285.0 eV The XPS Library
P 15 GaP 129.1 eV 129.4 eV 285.0 eV The XPS Library
P 15 Ni2P 129.6 eV   285.0 eV The XPS Library
P 15 P – element 130.1 eV   285.0 eV The XPS Library
P 15 MHxPO4 (N*8) 133.1 eV 133.8 eV 284.8 eV Avg BE – NIST
P 15 LiFePO4 133.3 eV   285.0 eV The XPS Library
P 15 NaH2PO4 (N*3) 134.0 eV 134.7 eV 284.8 eV Avg BE – NIST
P 15 NiPO4 134.0 eV   285.0 eV The XPS Library
P 15 NaPO3 (N*4) 134.2 eV 135.3 eV 284.8 eV Avg BE – NIST
P 15 NH4PF6 (N*2) 137.4 eV 138.1 eV 284.8 eV Avg BE – NIST

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

P (2p3/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

P (2p3/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV),
P (2p3/2)
Metal phosphide ~128.5
Metal phosphate ~133

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

P (2p3/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

P (2p3/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
P 2p InP 128.9 ±0.7 128.2 129.5
P 2p GaP 129.1 ±0.6 128.5 129.7
P 2p P 130.1 ±0.3 129.8 130.3
P 2p P (red) 130.1 ±0.3 129.8 130.3
P 2p Ph3P 130.9 ±0.3 130.6 131.2
P 2p Ph2PSH 132.4 ±0.4 132.0 132.7
P 2p Phosphate(-PO4) 132.5 ±0.4 132.1 132.9
P 2p Pyrophosphate(-P2O7) 132.9 ±0.4 132.5 133.2
P 2p (PhO)3PO 134.2 ±0.6 133.6 134.8
P 2p Metaphosphate(-PO3) 134.3 ±0.3 134.0 134.6
P 2p P4O10 135.5 ±0.5 135.0 135.9

 Periodic Table 



 

Histograms of NIST BEs for P (2p3/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  130.2 eV for Po based on 11 literature BEs Histogram indicates:  129.1 eV for GaP based on 8 literature BEs

Histogram indicates:  132.6 eV for PO4 (phosphate) based on 6 literature BEs

Table #6


NIST Database of P (2p3/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
P 2p3/2 InP 127.74 Click
P 2p3/2 ScP 127.75 Click
P 2p3/2 InP 127.80 Click
P 2p3/2 InP 127.80 Click
P 2p3/2 InP 127.80 Click
P 2p3/2 InP 127.80 Click
P 2p3/2 PF3/K/Ru 128.10 Click
P 2p3/2 PF3/K/Ru 128.10 Click
P 2p3/2 PF3/K/Ru 128.10 Click
P 2p3/2 PF3/K/Ru 128.10 Click
P 2p3/2 InP 128.24 Click
P 2p3/2 InP 128.24 Click
P 2p3/2 InP 128.30 Click
P 2p3/2 PCl3/Ru 128.30 Click
P 2p3/2 PCl3/Ru 128.30 Click
P 2p3/2 PH3/Ru 128.30 Click
P 2p3/2 PH3/Ru 128.30 Click
P 2p3/2 PH3/Ru 128.30 Click
P 2p3/2 PH3/Ru 128.30 Click
P 2p3/2 Zn3P2 128.30 Click
P 2p3/2 InP 128.35 Click
P 2p3/2 H/InP 128.40 Click
P 2p3/2 InP 128.40 Click
P 2p3/2 TiP 128.40 Click
P 2p3/2 GaP 128.50 Click
P 2p3/2 InP 128.65 Click
P 2p3/2 Zn3P2 128.65 Click
P 2p3/2 GaP 128.70 Click
P 2p3/2 InP 128.70 Click
P 2p3/2 PF3/K/Ru 128.70 Click
P 2p3/2 ZnSiP2 128.70 Click
P 2p3/2 GaP 128.80 Click
P 2p3/2 InP 128.80 Click
P 2p3/2 Cd3P2 128.85 Click
P 2p3/2 GaP 128.90 Click
P 2p3/2 Cd(3-x)Zn(x)P2 129.00 Click
P 2p3/2 InP 129.00 Click
P 2p3/2 InP 129.00 Click
P 2p3/2 CrP 129.06 Click
P 2p3/2 CrP 129.06 Click
P 2p3/2 InP 129.06 Click
P 2p3/2 Cr73.5P26.5 129.08 Click
P 2p3/2 Cr73.5P26.5 129.08 Click
P 2p3/2 Cr90.5P9.5 129.08 Click
P 2p3/2 Cr90.5P9.5 129.08 Click
P 2p3/2 Cr92.5P7.5 129.08 Click
P 2p3/2 Cr92.5P7.5 129.08 Click
P 2p3/2 CrP3 129.10 Click
P 2p3/2 InP 129.10 Click
P 2p3/2 InP 129.10 Click
P 2p3/2 InP 129.10 Click
P 2p3/2 InP 129.10 Click
P 2p3/2 Ni89P11 129.10 Click
P 2p3/2 VP 129.10 Click
P 2p3/2 GaP 129.20 Click
P 2p3/2 InP 129.20 Click
P 2p3/2 Ni89P11 129.20 Click
P 2p3/2 PH3/Si 129.20 Click
P 2p3/2 InP 129.30 Click
P 2p3/2 Ni79P21 129.30 Click
P 2p3/2 PCl3/Ru 129.30 Click
P 2p3/2 PH3/Ru 129.30 Click
P 2p3/2 PH3/Ru 129.30 Click
P 2p3/2 Co2P 129.40 Click
P 2p3/2 Fe3P 129.40 Click
P 2p3/2 GaP 129.40 Click
P 2p3/2 InP 129.40 Click
P 2p3/2 MnP 129.40 Click
P 2p3/2 Ni79P21 129.40 Click
P 2p3/2 P 129.44 Click
P 2p3/2 CdP2 129.45 Click
P 2p3/2 InP 129.45 Click
P 2p3/2 B6Cr14Fe32Ni36P12Ox 129.50 Click
P 2p3/2 CoP 129.50 Click
P 2p3/2 Fe2P 129.50 Click
P 2p3/2 FeP 129.50 Click
P 2p3/2 FeP 129.50 Click
P 2p3/2 Ni2P 129.50 Click
P 2p3/2 Ni5P4 129.50 Click
P 2p3/2 CrP 129.60 Click
P 2p3/2 CuP2 129.60 Click
P 2p3/2 GaP 129.60 Click
P 2p3/2 InP/H2S 129.60 Click
P 2p3/2 ZnP2 129.60 Click
P 2p3/2 FeP3 129.62 Click
P 2p3/2 FeP3 129.66 Click
P 2p3/2 CuP2 129.70 Click
P 2p3/2 GaP 129.70 Click
P 2p3/2 PCl3/Ru 129.70 Click
P 2p3/2 CdGeP2 129.75 Click
P 2p3/2 FeP2 129.80 Click
P 2p3/2 PF3/K/Ru 129.80 Click
P 2p3/2 ZnP2 129.80 Click
P 2p3/2 P 129.90 Click
P 2p3/2 P 129.90 Click
P 2p3/2 PF3/K/Ru 129.90 Click
P 2p3/2 P 129.94 Click
P 2p3/2 P 129.96 Click
P 2p3/2 P 129.98 Click
P 2p3/2 P 130.00 Click
P 2p3/2 P 130.00 Click
P 2p3/2 MnP 130.10 Click
P 2p3/2 P 130.10 Click
P 2p3/2 P 130.20 Click
P 2p3/2 Fe40Ni40P14B8 130.25 Click
P 2p3/2 P 130.25 Click
P 2p3/2 P 130.35 Click
P 2p3/2 P 130.45 Click
P 2p3/2 Pd(P(C6H5)3)4 130.60 Click
P 2p3/2 PH3/Ru 130.60 Click
P 2p3/2 P 130.90 Click
P 2p3/2 (P(C2H5)2-C6H5)2ClRuCl3Ru(P(C2H5)2-C6H5)3 131.10 Click
P 2p3/2 P4S3 131.10 Click
P 2p3/2 PCl3/Ru 131.10 Click
P 2p3/2 MoWCl4(P(CH3)3)4 131.30 Click
P 2p3/2 P4S3 131.30 Click
P 2p3/2 Mo2Cl4(P(CH3)3)4 131.40 Click
P 2p3/2 PF3/K/Ru 131.40 Click
P 2p3/2 RuCl3(P(CH3)2C6H5)3 131.40 Click
P 2p3/2 RuCl2(P(C6H5)3)3 131.50 Click
P 2p3/2 (P(C6H5)3)2ClRuCl3Ru(CO)(P(C6H5)3)2 131.60 Click
P 2p3/2 (P(C6H5)3)2ClRuCl3Ru(CS)(P(C6H5)3)2 131.60 Click
P 2p3/2 PF3/K/Ru 131.80 Click
P 2p3/2 Cs3PO4 132.10 Click
P 2p3/2 (-CH2C-H(C6H4)PH2)n 132.20 Click
P 2p3/2 Na3PO4 132.30 Click
P 2p3/2 Na3PO4 132.30 Click
P 2p3/2 NiPS3 132.30 Click
P 2p3/2 (C6H5)3P=CH2 132.40 Click
P 2p3/2 PCl3/Ru 132.40 Click
P 2p3/2 Na3PO4 132.50 Click
P 2p3/2 Na3SPO3 132.50 Click
P 2p3/2 Rb3PO4 132.50 Click
P 2p3/2 Na3PO4 132.55 Click
P 2p3/2 Cs4P2O7 132.60 Click
P 2p3/2 K4P2O7 132.60 Click
P 2p3/2 NaH2PO2 132.60 Click
P 2p3/2 NaH2PO2 132.60 Click
P 2p3/2 PF3/K/Ru 132.60 Click
P 2p3/2 PF3/K/Ru 132.60 Click
P 2p3/2 (AgI)60(Ag2O)30(P2O5)10 132.70 Click
P 2p3/2 (AgI)66.7(Ag2O)25(P2O5)8.3 132.80 Click
P 2p3/2 K2HPO4 132.80 Click
P 2p3/2 Na3PO4 132.80 Click
P 2p3/2 Na4P2O6 132.80 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 132.90 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 132.90 Click
P 2p3/2 AlPO4 132.90 Click
P 2p3/2 Ca3(PO4)2 132.90 Click
P 2p3/2 Hg3PO4 132.90 Click
P 2p3/2 Na2HPO3 132.90 Click
P 2p3/2 Na3PO4 132.90 Click
P 2p3/2 NaH2PO2 132.90 Click
P 2p3/2 NaH2PO2 132.90 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 133.00 Click
P 2p3/2 alpha-Zr(HPO4)2.H2O 133.00 Click
P 2p3/2 H2S/InP 133.00 Click
P 2p3/2 Na2HPO4.H2O 133.00 Click
P 2p3/2 Na2HPO4.H2O 133.00 Click
P 2p3/2 Zr(HPO4)2.H2O 133.00 Click
P 2p3/2 (AgI)57.1(Ag2O)28.6(P2O5)14.3 133.05 Click
P 2p3/2 P4S10 133.05 Click
P 2p3/2 (AgI)65.0(Ag2O)23.3(P2O5)11.7 133.10 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 133.10 Click
P 2p3/2 (Zr(HPO4)2)2(C5H3NC2H2C5H3N) 133.10 Click
P 2p3/2 (Zr(HPO4)2)2(C5H3NC2H2C5H3N).2H2O 133.10 Click
P 2p3/2 alpha-Zr(HPO4)2(C10H8N2)0.25.1.5H2O 133.10 Click
P 2p3/2 alpha-Zr(HPO4)2(C12H8N2)0.5 133.10 Click
P 2p3/2 alpha-Zr(HPO4)2(C12H8N2)0.5.2H2O 133.10 Click
P 2p3/2 CrPS4 133.10 Click
P 2p3/2 Na2HPO4 133.10 Click
P 2p3/2 Na2HPO4 133.10 Click
P 2p3/2 Na2HPO4 133.10 Click
P 2p3/2 Na4P2O7 133.10 Click
P 2p3/2 O8P2Pb3 133.10 Click
P 2p3/2 Rb4P2O7 133.10 Click
P 2p3/2 (AgI)50.0(Ag2O)33.3(P2O5)16.7 133.15 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 133.20 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 133.20 Click
P 2p3/2 K3PO4 133.20 Click
P 2p3/2 K4[Pt2(P2O5H2)4I].nH2O 133.20 Click
P 2p3/2 KH2PO2.H2O 133.20 Click
P 2p3/2 Na4P2O7 133.20 Click
P 2p3/2 (AgI)60.0(Ag2O)25.0(P2O5)15.0 133.30 Click
P 2p3/2 alpha-Zr(HPO4)2(C10H8N2)0.25 133.30 Click
P 2p3/2 alpha-Zr(HPO4)2(C14H12N2)0.5 133.30 Click
P 2p3/2 alpha-Zr(HPO4)2(C14H12N2)0.5.2.5H2O 133.30 Click
P 2p3/2 CePO4 133.30 Click
P 2p3/2 Na2H2P2O6 133.30 Click
P 2p3/2 Na4P2O7 133.30 Click
P 2p3/2 Ni3(PO4)2 133.30 Click
P 2p3/2 PCl3 133.30 Click
P 2p3/2 TbPO4 133.30 Click
P 2p3/2 CrPO4 133.33 Click
P 2p3/2 CrPO4 133.33 Click
P 2p3/2 Na4P2O7 133.35 Click
P 2p3/2 K4[Pt2(P2O5H2)4].3H2O 133.40 Click
P 2p3/2 K4[Pt2(P2O5H2)4Br].3H2O 133.40 Click
P 2p3/2 Na2HPO4 133.40 Click
P 2p3/2 PF3/K/Ru 133.40 Click
P 2p3/2 PF3/K/Ru 133.40 Click
P 2p3/2 PF3/Ru 133.40 Click
P 2p3/2 PF3/Ru 133.40 Click
P 2p3/2 SP(NH3)3 133.40 Click
P 2p3/2 (Ag2O)60(P2O5)40 133.50 Click
P 2p3/2 K2HPO4 133.50 Click
P 2p3/2 Na4P2O7 133.50 Click
P 2p3/2 (AgI)50(Ag2O)30(P2O5)20 133.60 Click
P 2p3/2 (NaPO3)3 133.60 Click
P 2p3/2 Ca10(PO4)6F2 133.60 Click
P 2p3/2 K4[Pt2(P2O5H2)4Cl].3H2O 133.60 Click
P 2p3/2 Li3PO4 133.60 Click
P 2p3/2 BaHPO3 133.70 Click
P 2p3/2 Mn3(PO4)2 133.70 Click
P 2p3/2 (AgI)55.0(Ag2O)25.0(P2O5)10.0 133.75 Click
P 2p3/2 FePO4 133.75 Click
P 2p3/2 (MoO3)68(P2O5)32 133.80 Click
P 2p3/2 Ca10(PO4)6(OH)2 133.80 Click
P 2p3/2 Ca2P2O7 133.80 Click
P 2p3/2 CaHPO4 133.80 Click
P 2p3/2 CaHPO4.2H2O 133.80 Click
P 2p3/2 Na3(PO2NH)3 133.80 Click
P 2p3/2 Na3SPO3 133.80 Click
P 2p3/2 (-PN-(OC6H5)2)n 133.85 Click
P 2p3/2 (MoO3)46(P2O5)54 133.90 Click
P 2p3/2 (MoO3)56(P2O5)44 133.90 Click
P 2p3/2 InPO4.nH20 133.90 Click
P 2p3/2 Na2PFO3 133.90 Click
P 2p3/2 InPO4 133.95 Click
P 2p3/2 NaH2PO4 134.00 Click
P 2p3/2 P3N5 134.00 Click
P 2p3/2 (AgI)50.0(Ag2O)25.0(P2O5)25.0 134.05 Click
P 2p3/2 Na2PFO3 134.05 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 134.10 Click
P 2p3/2 Na4P2O7 134.10 Click
P 2p3/2 GaPO4 134.20 Click
P 2p3/2 InPO4 134.20 Click
P 2p3/2 NaH2PO4 134.20 Click
P 2p3/2 NaPO3 134.20 Click
P 2p3/2 P4S10 134.20 Click
P 2p3/2 (Ce0.9Tb0.1)PO4 134.30 Click
P 2p3/2 (NaPO3)3 134.30 Click
P 2p3/2 H3PO3 134.30 Click
P 2p3/2 Li4P2O7 134.30 Click
P 2p3/2 NaPO3 134.30 Click
P 2p3/2 NaPO3 134.50 Click
P 2p3/2 PON 134.50 Click
P 2p3/2 H2[C6H5CH2PO3] 134.60 Click
P 2p3/2 In(PO3)3 134.60 Click
P 2p3/2 H4P2O5 134.70 Click
P 2p3/2 KH2PO4 134.70 Click
P 2p3/2 Na2H2P2O7 134.70 Click
P 2p3/2 (NaPO3)3 134.80 Click
P 2p3/2 (NH4)2FPO3 134.90 Click
P 2p3/2 HPO3 134.90 Click
P 2p3/2 In(PO3)4 134.90 Click
P 2p3/2 BPO4 135.05 Click
P 2p3/2 P2O5 135.10 Click
P 2p3/2 Si0.14Al0.471P0.388O2 135.10 Click
P 2p3/2 H3PO4 135.20 Click
P 2p3/2 P2O5 135.20 Click
P 2p3/2 P2O5 135.20 Click
P 2p3/2 POBr3 135.20 Click
P 2p3/2 (PNCl2)3 135.30 Click
P 2p3/2 H4P2O7 135.30 Click
P 2p3/2 NaPO3 135.30 Click
P 2p3/2 Si0.002Al0.494P0.504O2 135.30 Click
P 2p3/2 P4O10 135.50 Click
P 2p3/2 KPF2O2 135.60 Click
P 2p3/2 P2O5 135.60 Click
P 2p3/2 P2O5 135.60 Click
P 2p3/2 P4O10 135.60 Click
P 2p3/2 P4O10 135.60 Click
P 2p3/2 Cl3OP 135.70 Click
P 2p3/2 PCl5 136.20 Click
P 2p3/2 PBr5 139.20 Click

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions  

for XPS Research Studies on Phosphorus Materials

 

 


 

Expert Knowledge Explanations

 Periodic Table 


 

 

Phosphorus Chemical Compounds

 

Peak-fits and Overlays of Chemical State Spectra

Pure Black Phosphorus:  P (2p)
C (1s) BE = 285.0 eV  (Flood Gun ON)
KH2PO4:  P (2p)
C (1s) BE = 285.0 eV  (Flood Gun ON)
InP:  P (2p)
As measured, C (1s) at 285.3 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Li Iron Phosphate, LiFePO4
(ground powder)

Survey Spectrum P (2p) Spectrum


 
C (1s) Spectrum O (1s) Spectrum


 
Valence Band Spectrum Fe (2p) Spectrum
na


   

Indium Phosphide, InP
(crystalline wafer, fresh exposed bulk)

Survey Spectrum P (2p) Spectrum


  .
C (1s) Spectrum In (3d) Spectrum


  .
Valence Band Spectrum  
 
   
   

Gallium Phosphide, GaP
(crystalline wafer, fresh exposed bulk)

Survey Spectrum P (2p) Spectrum


  .
C (1s) Spectrum Ga (3d) Spectrum


  .
Valence Band Spectrum Ga (2p3/2) Spectrum


   
  Ga (2p3/2 and 2p1/2) Spectrum – extended range
 

 Periodic Table 



 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of Phosphorus

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliaPlity” of the atom % values produced by XPS.

 Periodic Table 

Copyright ©:  The XPS Library

 

Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 

XPS Facts, Guidance & Information

 Periodic Table 

    Element   Phosphorus (P)
 
    Primary XPS peak used for Peak-fitting:   P (2p)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for “p” Orbital, ΔBE = 0.84 eV
 
    Binding Energy (BE) of Primary XPS Signal:   130 eV
 
    Scofield Cross-Section (σ) Value:   P (2p3/2) = 0.789.     P (2p1/2) = 0.403
 
    Conductivity:   P resistivity =  
Native Oxide suffers Differential Charing
 
    Range of P (2p3/2) Chemical State BEs:   127-139 eV range   (Po to PO4)  
    Signals from other elements that overlap
P (2p3/2) Primary Peak:
  Si (2p) satellite  
    Bulk Plasmons:   ~xx eV above peak max for pure  
    Shake-up Peaks:   xx  
    Multiplet Splitting Peaks:   xx  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting P (2p)

  • FWHM (eV) of P (2p3/2) for Pure Po or Phosphide crystals:  ~0.7 eV using 25 eV Pass Energy after ion etching:
  • FWHM (eV) of P (2p3/2) for POx:  ~1.3 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  130 eV for P (2p) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for P (2p):  Si (2p) satellite

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (2p3/2) FWHM (eV) = ~0.90 eV for PE 50 on Thermo K-Alpha
    • Ag (2p3/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (2p3/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
    • Ag (2p3/2) FWHM (eV) = ~0.85 eV for PE 50 on SSI S-Probe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.
  • Constraints used on Peak-fitting: typically constrain the peak area ratios based on the Scofield cross-section values
  • Asymmetry for Conductive materials:  20-30% with increased Lorentzian %
  • Peak-fitting “2s” or “3s” Peaks:  Often need to use 50-60% Lorentzian peak-shape

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific

  • Metal develops a thick native oxide due to the reactive nature of clean Metal.
  • The native oxide of P Ox is 4-8 nm thick.
  • Metal thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Metal forms a low level of Carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Collect principal P (2p) peak as well as P (2s)
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Phosphorus (P)

  • Conductivity:  Metals readily develop a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  P (2p3/2) at 130.1 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum: 25-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  120-140 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  110- 250 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge, As and Ga, above 1100 is waste of time)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching P and various reactive surfaces.  Carbides form due to the presence of residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature
 
 
from Thermo website
 
 
 



End of File