Pto PtO2 PtCl4 PtS2 PtMn Pt/Zeolite Pt/C          

Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                       XPS Database of Polymers                    → Six (6) BE Tables


 

Platinum (Pt)

 

Sperrylite – PtAs2 Platinum – Pto Isoferroplatinum – Pt3Fe

 

  Page Index
  • Expert Knowledge Explanations


Platinum (Pto) Metal
Peak-fits, BEs, FWHMs, and Peak Labels


Platinum (Pto) Metal
Pt (4f) Spectrum – raw spectrum
Platinum (Pto) Metal
Peak-fit of Pt (4f) Spectrum (w/o asymm)

 Periodic Table – HomePage  
Platinum (Pto) Metal
Pt (4f) Spectrum –
extended range 
Platinum (Pto) Metal
Peak-fit of Pt (4f) Spectrum (w asymm)
 

 

Survey Spectrum of Platinum (Pto)
with Peaks Integrated, Assigned and Labelled


 Periodic Table 

XPS Signals for Platinum (Pto) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
  Pt (4s) 725 1.90 9.8
  Pt (4p1/2) 609 2.14 11.6
O (1s) overlaps Pt (4p3/2) 519 5.76 11.6
  Pt (4d3/2) 331 7.78 13.4
  Pt (4d5/2) 314 11.32 13.4
  Pt (4f5/2) 74.39 4.81 15.3
Al (2p) overlaps Pt (4f7/2) 71.06 8.65 15.3
Si (2p) overlaps Pt (5s) 102 0.459 15.1
  Pt (5p1/2) 66 0.444 15.5
Li (1s) overlaps Pt (5p3/2) 51 1.04 15.5

σ:  abbreviation for the term Scofield Photoionization Cross-Section which is used with IMFP and TF to generate RSFs and atom% quantitation

Plasmon Peaks

Auger Peaks

Energy Loss    Intrinsic Plasmon Peak:  ~xx eV above peak max
Expected Bandgap for PtO2: 0.5 – 0.6 eV
Work Function for Pt:  xx eV

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 


 

Valence Band Spectrum from Pto Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching


 

Plasmon Peaks from Pto Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Pt (4f) – Extended Range Spectrum Pt (4f) – Extended Range Spectrum – Vertically Zoomed
 Periodic Table 

 

Pt (MNN) Auger Peaks from Pto Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Pto Metal – main Auger peak Pto Metal – full Auger range

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Artefacts Caused by Argon Ion Etching

C (1s) from Platinum Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Pto

can form when Argon Ions are used
to removed surface contamination

   

 

Side-by-Side Comparison of

Pt Native Oxide & Platinum Di-oxide, PtO2
Peak-fits, BEs, FWHMs, and Peak Labels

Pt Native Oxide PtO2
Pt (4f) from Pt Native Oxide
Flood Gun OFF, As-Measured, C (1s) at 285.1 eV 
Pt (4f) from PtO2 – pressed powder
Flood Gun OFF


 Periodic Table   
Pt Native Oxide PtO2
C (1s) from Pt Native Oxide
As-Measured, C (1s) at 285.1 eV (Flood Gun OFF)

C (1s) from PtO2 – pressed powder
Flood Gun OFF

 

 


 Periodic Table 
 
Pt Native Oxide PtO2
O (1s) from Pt Native Oxide
As-Measured, C (1s) at 285.1 eV (Flood Gun OFF)

O (1s) from PtO2 – pressed powder
Flood Gun OFF

 

 Periodic Table

 


 

Survey Spectrum of Pt Native Oxide
with Peaks Integrated, Assigned and Labelled

 

 Periodic Table 


 

 

Survey Spectrum of Platinum Dioxide, PtO2
with Peaks Integrated, Assigned and Labelled

 Periodic Table  


 

Overlays of Pt (4f) Spectra for
Pt Native Oxide and PtO2

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 

 Overlay of Pto metal and Pt Native Oxide – Pt (4f)
Native Oxide C (1s) = 285.1 eV
Flood gun OFF

 Overlay of Pto metal and PtO2 – Pt (4f)
Pure Oxide C (1s) = 285.0 eV
Chemical Shift: 3.9 eV
 Periodic Table  Copyright ©:  The XPS Library 

 

Valence Band Spectra
Pto, PtO2 

Pto
Ion etched clean
PtO2  pressed powder
Flood gun is OFF,


Overlay of Valence Band Spectra
for Pto metal and PtO2

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Platinum Minerals, Gemstones, and Chemical Compounds

 

 Pt-Rh Catalyst Potassium Platinum Chloride – K2PtCl4 Platinum Sulfide – PtS Platinum Bromide – PtBr2

 Periodic Table 



 

 

Six (6) Chemical State Tables of Pt (4f7/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears between 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Pt (4f7/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Pt 78 Pt – element 71.0 eV   285.0 eV The XPS Library
Pt 78 Pt/Ni (N*7) 71.1 eV 71.2 eV 284.8 eV Avg BE – NIST
Pt 78 Pt3Ti (N*4) 71.4 eV 71.7 eV 284.8 eV Avg BE – NIST
Pt 78 Pt-Si (N*2) 72.5 eV 73 eV 284.8 eV Avg BE – NIST
Pt 78 Pt-(OH)2 (N*2) 72.6 eV 72.8 eV 284.8 eV Avg BE – NIST
Pt 78 K2PtCl4 (N*6) 72.9 eV 73.4 eV 284.8 eV Avg BE – NIST
Pt 78 K2PtI6 (N*2) 73.4 eV   284.8 eV Avg BE – NIST
Pt 78 Pt-Cl2 (N*1) 73.6 eV   284.8 eV Avg BE – NIST
Pt 78 PtO (N*5) 73.8 eV 74.6 eV 284.8 eV Avg BE – NIST
Pt 78 Pt-O 73.9 eV   285.0 eV The XPS Library
Pt 78 PtO2 (N*6) 74.1 eV 75.6 eV 284.8 eV Avg BE – NIST
Pt 78 PtO(OH)2 (N*1) 74.5 eV   284.8 eV Avg BE – NIST
Pt 78 Pt(OH)4 (N*1) 74.6 eV   284.8 eV Avg BE – NIST
Pt 78 K2Pt(OH)6 (N*2) 75.1 eV   284.8 eV Avg BE – NIST
Pt 78 Pt-O2 75.1 eV   285.0 eV The XPS Library
Pt 78 Pt-Cl4 (N*1) 75.5 eV   284.8 eV Avg BE – NIST
Pt 78 K2PtF6 (N*2) 77.6 eV   284.8 eV Avg BE – NIST

 

 

 

 

 

 

 

 

 

 

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Pt (4f7/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Pt (4f7/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Pt (4f7/2)
Pt metal 71.0
PtO 72.4
PtO2 74.9

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Pt (4f7/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Pt (4f7/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift / Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min   max
Pt 4f7/2 Pt 71.1 ±0.1 71.0 71.2
Pt 4f7/2 Pt2Si 72.5 ±0.3 72.2 72.7
Pt 4f7/2 Pt(OH)2 72.6 ±0.3 72.3 72.8
Pt 4f7/2 I2Pt(Me3P)2cis 72.6 ±0.3 72.3 72.8
Pt 4f7/2 Cl2Pt(Ph3P)2cis 72.7 ±0.4 72.3 73.0
Pt 4f7/2 I2Pt(Me3P)2trans 72.8 ±0.3 72.5 73.0
Pt 4f7/2 PtSi 73.1 ±0.3 72.8 73.3
Pt 4f7/2 PtCl2 73.6 ±0.3 73.3 73.8
Pt 4f7/2 Oxides 74.4 ±0.6 73.8 75.0
Pt 4f7/2 (IV)Halides 75.5 ±2.1 73.4 77.6
Pt 4f7/2 PtCl4 75.6 ±0.3 75.3 75.8

 

 Periodic Table 



 


Histograms of NIST BEs for Pt (4f7/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  71.1 eV for Pto based on 31 literature BEs Histogram indicates:  74.9 eV for PtO based on 6 literature BEs

Histogram indicates:  74.8 eV for PtO2 based on 6 literature BEs

Table #6


NIST Database of Pt (4f7/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Pt 4f7/2 Ag98.9Pt1.1 70.20  Click
Pt 4f7/2 Ag95.8Pt4.2 70.40  Click
Pt 4f7/2 Cu/Pt 70.60  Click
Pt 4f7/2 Cu/Pt 70.60  Click
Pt 4f7/2 Pt 70.61  Click
Pt 4f7/2 CO/Cu/Pt 70.63  Click
Pt 4f7/2 Pt/Cu 70.64  Click
Pt 4f7/2 Pt/CeO2+TiO2 (80-20) 70.70  Click
Pt 4f7/2 Pt 70.72  Click
Pt 4f7/2 CO/Pt 70.72  Click
Pt 4f7/2 O/Pt 70.72  Click
Pt 4f7/2 Pt/CCH3 70.72  Click
Pt 4f7/2 Pt 70.73  Click
Pt 4f7/2 Sn/Pt 70.73  Click
Pt 4f7/2 Sn/Pt 70.73  Click
Pt 4f7/2 Pt 70.74  Click
Pt 4f7/2 Co/Pt 70.74  Click
Pt 4f7/2 H2/Sn/Pt 70.76  Click
Pt 4f7/2 H2/Sn/Pt 70.76  Click
Pt 4f7/2 Pt/Co/Pt 70.81  Click
Pt 4f7/2 Pt 70.83  Click
Pt 4f7/2 Pt/CO 70.83  Click
Pt 4f7/2 Co75Pt25 70.83  Click
Pt 4f7/2 Pt/K 70.84  Click
Pt 4f7/2 Pt 70.87  Click
Pt 4f7/2 Pt 70.90  Click
Pt 4f7/2 Pt 70.90  Click
Pt 4f7/2 Pt 70.90  Click
Pt 4f7/2 Ag5.3Pt94.7 70.90  Click
Pt 4f7/2 CO/Cu/Pt 70.95  Click
Pt 4f7/2 Cu/Pt 70.97  Click
Pt 4f7/2 Cu/Pt 70.97  Click
Pt 4f7/2 Pt 70.99  Click
Pt 4f7/2 Pt 71.00  Click
Pt 4f7/2 Pt 71.00  Click
Pt 4f7/2 Pt/Al2O3 71.00  Click
Pt 4f7/2 Pt(P(C6H5)3)2((CH3)2NC6H4NO) 71.00  Click
Pt 4f7/2 O2/Pt 71.00  Click
Pt 4f7/2 Pt/Cu 71.00  Click
Pt 4f7/2 Pt 71.07  Click
Pt 4f7/2 Pt 71.07  Click
Pt 4f7/2 Pt 71.08  Click
Pt 4f7/2 O2/Pt 71.08  Click
Pt 4f7/2 Co/Pt 71.08  Click
Pt 4f7/2 Pt 71.09  Click
Pt 4f7/2 Pt 71.09  Click
Pt 4f7/2 O2/Pt 71.09  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt 71.10  Click
Pt 4f7/2 Pt90Rh10 71.10  Click
Pt 4f7/2 Pt90Rh10 71.10  Click
Pt 4f7/2 Pt/Ni 71.10  Click
Pt 4f7/2 Pt0.042C 71.10  Click
Pt 4f7/2 Pt0.042C 71.10  Click
Pt 4f7/2 Pt0.007C 71.10  Click
Pt 4f7/2 Pt0.007C 71.10  Click
Pt 4f7/2 Pt2.830C 71.10  Click
Pt 4f7/2 Pt2.830C 71.10  Click
Pt 4f7/2 Pt 71.12  Click
Pt 4f7/2 CO/Pt 71.12  Click
Pt 4f7/2 CO/Pt 71.12  Click
Pt 4f7/2 O/Pt 71.12  Click
Pt 4f7/2 Pt/CCH3 71.12  Click
Pt 4f7/2 Pt0.013C 71.12  Click
Pt 4f7/2 Pt0.013C 71.12  Click
Pt 4f7/2 Pt0.012C 71.12  Click
Pt 4f7/2 Pt0.012C 71.12  Click
Pt 4f7/2 Pt 71.13  Click
Pt 4f7/2 Pt 71.13  Click
Pt 4f7/2 Co/Pt 71.13  Click
Pt 4f7/2 Co/Pt 71.13  Click
Pt 4f7/2 Pt/Co/Pt 71.13  Click
Pt 4f7/2 Pt/Co/Pt 71.13  Click
Pt 4f7/2 Pt 71.14  Click
Pt 4f7/2 Pt0.011C 71.14  Click
Pt 4f7/2 Pt0.011C 71.14  Click
Pt 4f7/2 Pt/Ni 71.15  Click
Pt 4f7/2 Pt/Ni 71.15  Click
Pt 4f7/2 Pt 71.20  Click
Pt 4f7/2 Pt 71.20  Click
Pt 4f7/2 Pt 71.20  Click
Pt 4f7/2 Pt 71.20  Click
Pt 4f7/2 Pt 71.20  Click
Pt 4f7/2 Pt90Rh10 71.20  Click
Pt 4f7/2 Pt/Ni 71.20  Click
Pt 4f7/2 Pt/Ni 71.20  Click
Pt 4f7/2 Pt/Ni 71.20  Click
Pt 4f7/2 Ag98.9Pt1.1 71.20  Click
Pt 4f7/2 Pt/Si 71.22  Click
Pt 4f7/2 Pt/Ni 71.25  Click
Pt 4f7/2 [Pt(CH3)2(P(C6H5)3)2] 71.30  Click
Pt 4f7/2 Pt 71.30  Click
Pt 4f7/2 Pt 71.30  Click
Pt 4f7/2 Pt 71.30  Click
Pt 4f7/2 Pt 71.30  Click
Pt 4f7/2 Pt 71.30  Click
Pt 4f7/2 Pt3Ti 71.30  Click
Pt 4f7/2 Pt/CeO2+TiO2 (20-80) 71.30  Click
Pt 4f7/2 O2/Pt3Ti 71.30  Click
Pt 4f7/2 O2/Pt3Ti 71.30  Click
Pt 4f7/2 O2/Pt3Ti 71.30  Click
Pt 4f7/2 Pt84Re16 71.31  Click
Pt 4f7/2 O/Pt 71.34  Click
Pt 4f7/2 Co75Pt25 71.36  Click
Pt 4f7/2 Co75Pt25 71.38  Click
Pt 4f7/2 [Pt(P(C6H5)3)3] 71.40  Click
Pt 4f7/2 [Pt(P(C6H5)3)3] 71.40  Click
Pt 4f7/2 [Pt((C6H5)3P)4] 71.40  Click
Pt 4f7/2 Pt3Ti 71.40  Click
Pt 4f7/2 O2/Pt3Ti 71.40  Click
Pt 4f7/2 Pt(P(C6H5)3)4 71.40  Click
Pt 4f7/2 [(C6H5)3P]3Pt 71.40  Click
Pt 4f7/2 Co/Pt 71.40  Click
Pt 4f7/2 Pt83Re17 71.44  Click
Pt 4f7/2 Pt/CCH3 71.48  Click
Pt 4f7/2 Pt/CeO2+TiO2 (80-20) 71.50  Click
Pt 4f7/2 Pt(P(C6H5)3)4 71.50  Click
Pt 4f7/2 [(Pt(P(C6H5)3)2S)2PtCl2] 71.50  Click
Pt 4f7/2 Pt/Co/Pt 71.56  Click
Pt 4f7/2 Pt/Co/Pt 71.56  Click
Pt 4f7/2 H2/Sn/Pt 71.57  Click
Pt 4f7/2 H2/Sn/Pt 71.57  Click
Pt 4f7/2 Pt3Ti 71.60  Click
Pt 4f7/2 Pt/CeO2+TiO2 (20-80) 71.60  Click
Pt 4f7/2 Re/Pt 71.60  Click
Pt 4f7/2 Co/Pt 71.60  Click
Pt 4f7/2 Pt73Re27 71.63  Click
Pt 4f7/2 Pt3Ti 71.65  Click
Pt 4f7/2 CO/Pt3Ti 71.65  Click
Pt 4f7/2 Pt3Ti 71.70  Click
Pt 4f7/2 Pt4H3Na45(AlO2)56(SiO2)136 71.70  Click
Pt 4f7/2 [Pt2(SP(C6H5)2)2(P(C6H5)3)2] 71.80  Click
Pt 4f7/2 [Pt(SP(C6H5)3)(P(C6H5)2)] 71.80  Click
Pt 4f7/2 Cl2(C5H5N)(CH2C5H5N)Pt 71.80  Click
Pt 4f7/2 [Pt(AuP(C6H5)3)8](NO3)2 71.80  Click
Pt 4f7/2 Pt53Re47 71.84  Click
Pt 4f7/2 K2[Pt(SCN)4] 71.90  Click
Pt 4f7/2 (C6H4S4)2(C6H4S4)[Pt(S2C2O2)2] 71.90  Click
Pt 4f7/2 [P(C6H5)3Pt(AuP(C6H5)3)6](NO3)2 71.90  Click
Pt 4f7/2 [P(C6H5)3HPt(AuP(C6H5)3)7](NO3)2 71.90  Click
Pt 4f7/2 Pt3(CO)Cl((C6H5)2PCH2P(C6H5)2)3[PF6] 71.90  Click
Pt 4f7/2 Pt4H7Na41(AlO2)56(SiO2)136 71.90  Click
Pt 4f7/2 Pt4H11Na37(AlO2)56(SiO2)136 71.90  Click
Pt 4f7/2 Pt39Re61 71.98  Click
Pt 4f7/2 [Pt3(CO)3(C6H11PH2)3] 72.00  Click
Pt 4f7/2 N(C2H5)4[Pt(S2C2O2)2] 72.00  Click
Pt 4f7/2 [P(C6H5)3Pt(AuP(C6H5)3)6(HgNO3)]NO3 72.00  Click
Pt 4f7/2 [IP(C6H5)3Pt(AuP(C6H5)3)4]BF4 72.00  Click
Pt 4f7/2 [(P(C6H5)3)2Pt(AuP(C6H5)3)3]PF6 72.00  Click
Pt 4f7/2 Pt4H20Na28(AlO2)56(SiO2)136 72.00  Click
Pt 4f7/2 (C6H4S4)2[Pt(S2C2O2)2] 72.05  Click
Pt 4f7/2 [PtCl2(P(C4H9)3)2] 72.10  Click
Pt 4f7/2 [N(C2H5)4]2[Pt(B10H12)2] 72.10  Click
Pt 4f7/2 ((CH3)2(CH3(CH2)17)2N)Pt(Cl)6/SiO2 72.10  Click
Pt 4f7/2 [(Pt(P(C6H5)3)2S)2] 72.10  Click
Pt 4f7/2 CO/Pt 72.13  Click
Pt 4f7/2 [Pt(CH3)2(P(C2H5)3)2] 72.20  Click
Pt 4f7/2 [Pt(C2H4)(P(C6H5)3)2] 72.20  Click
Pt 4f7/2 [Pt2Cl2((C6H5)2PCH2P(C6H5)2)2] 72.20  Click
Pt 4f7/2 [PtCl2(CH3SCH2CH2CH(NH2)COOH)] 72.20  Click
Pt 4f7/2 [Pt((C6H5)2PCH2P(C6H5)2)(CH3)2] 72.20  Click
Pt 4f7/2 [N(C2H5)4][Pt((C6H5)C(S)C(S)(C6H5))2] 72.20  Click
Pt 4f7/2 [(C2H5)3P]2Pt(CH3)2 72.20  Click
Pt 4f7/2 [Pt((C2H5)2NC(S)S)2] 72.30  Click
Pt 4f7/2 [PtCl2(P(C6H5)3)2] 72.30  Click
Pt 4f7/2 cis-[PtCl2(P(C6H5)3)2] 72.30  Click
Pt 4f7/2 PtOSn 72.30  Click
Pt 4f7/2 Pt3(CO)(SnF3)((C6H5)2PCH2P(C6H5)2)3[PF6] 72.30  Click
Pt 4f7/2 [P(C6H5)3COPt(AuP(C6H5)3)5]Cl 72.30  Click
Pt 4f7/2 [P(C6H5)3Pt(AuP(C6H5)3)5(HgNO3)2]NO3 72.30  Click
Pt 4f7/2 [P(C6H5)3CNPt(AuP(C6H5)3)6]NO3 72.30  Click
Pt 4f7/2 [PtBr2((CH3NCH)NHNH(CHNCH3))] 72.40  Click
Pt 4f7/2 [Pt(C2H2)(P(C6H5)3)2] 72.40  Click
Pt 4f7/2 (NH4)2[PtCl4] 72.40  Click
Pt 4f7/2 PtO 72.40  Click
Pt 4f7/2 [AuPt3(CO)3(C6H11PH2)4].PF6 72.40  Click
Pt 4f7/2 [(Pt(P(C6H5)3)2S)2PtCl2] 72.40  Click
Pt 4f7/2 [PtI2(P(C2H5)3)2] 72.50  Click
Pt 4f7/2 [Pt(H2NC(O)NHC(O)NH2)2]Cl2 72.50  Click
Pt 4f7/2 [Pt((C6H5)CSSC(C6H5))2] 72.50  Click
Pt 4f7/2 [Pt(C2H4)(P(C6H5)3)2] 72.50  Click
Pt 4f7/2 [Pt(C6H5)2(P(C2H5)3)2] 72.50  Click
Pt 4f7/2 Pt2Si 72.50  Click
Pt 4f7/2 [(C2H5)3P]2Pt(C6H5)2 72.50  Click
Pt 4f7/2 Pt3(SnF3)2((C6H5)2PCH2P(C6H5)2)3[PF6] 72.50  Click
Pt 4f7/2 Pt/Si 72.50  Click
Pt 4f7/2 [(CO)3(P(C6H5)3)4Pt3(AuP(C6H5)3)]NO3 72.50  Click
Pt 4f7/2 [Pt3(Re(CO)3))((C6H5)2PCH2P(C6H5)2)3][PF6] 72.50  Click
Pt 4f7/2 [Pt3(Re(CO)3))O((C6H5)2PCH2P(C6H5)2)3][PF6] 72.50  Click
Pt 4f7/2 PtS 72.55  Click
Pt 4f7/2 [PtI2(P(CH3)3)2] 72.60  Click
Pt 4f7/2 [PtClCH3(P(C2H5)3)2] 72.60  Click
Pt 4f7/2 K2[PtBr4] 72.60  Click
Pt 4f7/2 K2[PtBr4] 72.60  Click
Pt 4f7/2 Pt(OH)2 72.60  Click
Pt 4f7/2 [PtClH(P(C2H5)3)2] 72.60  Click
Pt 4f7/2 [(C2H5)3P]2PtHCl 72.60  Click
Pt 4f7/2 [(C2H5)3P]2PtCH3Cl 72.60  Click
Pt 4f7/2 [(C6H5)2PCH2CH2P(C6H5)2Pt(AuP(C6H5)3)4](PF6)2 72.60  Click
Pt 4f7/2 [CNPt(AuP(C6H5)3)8AuCN]NO3 72.60  Click
Pt 4f7/2 [CN(CH3)2C6H3Pt(AuP(C6H5)3)8](NO3)2 72.60  Click
Pt 4f7/2 [Pt2(P(C6H5)3)4SSCH3]I 72.60  Click
Pt 4f7/2 [(Pt2(P(C6H5)3)4S2Cu)2(mu-dppf)][PF6]2 72.60  Click
Pt 4f7/2 ((CH3)2(CH3(CH2)17)2N)Pt(Cl)6/SiO2 72.60  Click
Pt 4f7/2 [(Pt(P(C6H5)3)2S)2Au(P(C6H5)3)]PF6 72.60  Click
Pt 4f7/2 (C8H12)PtCl2 72.65  Click
Pt 4f7/2 [PtI2(P(CH3)3)2] 72.70  Click
Pt 4f7/2 [PtCl2(P(C2H5)3)2] 72.70  Click
Pt 4f7/2 [PtCl2(O2)(C10H8N2)] 72.70  Click
Pt 4f7/2 Pt3(CO)((C6H5)2PCH2P(C6H5)2)3[PF6]2 72.70  Click
Pt 4f7/2 [Pt2(P(C6H5)3)4SSCHCl2]PF6 72.70  Click
Pt 4f7/2 [(Pt2(P(C6H5)3)4S2Pd)2Cl2][PF6]2 72.70  Click
Pt 4f7/2 [(Pt2(P(C6H5)3)4S2)2Ag2][NO3]2 72.70  Click
Pt 4f7/2 [Pt(C2F4)(P(C6H5)3)2] 72.80  Click
Pt 4f7/2 [Pt(C2H4)(P(C6H5)3)2] 72.80  Click
Pt 4f7/2 [Pt2S2(P(C6H5)3)4] 72.80  Click
Pt 4f7/2 [Pt(-C-6H5S)2] 72.80  Click
Pt 4f7/2 Pt(OH)2 72.80  Click
Pt 4f7/2 Pt/CeO2+TiO2 (20-80) 72.80  Click
Pt 4f7/2 [(Pt(P(C6H5)3)2S)2Hg(C6H5)2PCH2CH2P(C6H5)2)][PF6]2 72.80  Click
Pt 4f7/2 [(Pt2(P(C6H5)3)4S2)2Hg][PF6]2 72.80  Click
Pt 4f7/2 [Pt2(P(C6H5)3)4SSCH2Cl]Cl 72.80  Click
Pt 4f7/2 Pt/Si 72.82  Click
Pt 4f7/2 K2PtCl4 72.90  Click
Pt 4f7/2 K2PtCl4 72.90  Click
Pt 4f7/2 [Pt2(NH3)4(C5H4ON)2]2(NO3)5 72.90  Click
Pt 4f7/2 [PtCl2(P(C6H5)3)2] 72.90  Click
Pt 4f7/2 [Pt3(ReO3)((C6H5)2PCH2P(C6H5)2)3][PF6]CH2Cl2 72.90  Click
Pt 4f7/2 [Pt3(Re(CO)3))O3((C6H5)2PCH2P(C6H5)2)3][PF6] 72.90  Click
Pt 4f7/2 [Pt2(P(C6H5)3)4SSCH2C6H5]PF6 72.90  Click
Pt 4f7/2 [Pt3(Re(CO)3))O2((C6H5)2PCH2P(C6H5)2)3][PF6]OC2H5 72.90  Click
Pt 4f7/2 [PtB10H12(P(C6H5)3)2] 73.00  Click
Pt 4f7/2 [PtCl(C2Cl3)(P(C6H5)3)2] 73.00  Click
Pt 4f7/2 [Pt(C(HNCH3)2)4(PF6)2] 73.00  Click
Pt 4f7/2 K2PtCl4 73.00  Click
Pt 4f7/2 K2PtCl4 73.00  Click
Pt 4f7/2 [PtBr4(C4H10N4)] 73.00  Click
Pt 4f7/2 [PtCl2(H2NC2H4NH2)2] 73.00  Click
Pt 4f7/2 [Pt(O2)((C6H5)3P)2] 73.00  Click
Pt 4f7/2 [PtCl2(P(C6H5)3)2] 73.00  Click
Pt 4f7/2 cis-[PtCl2(P(C6H5)3)2] 73.00  Click
Pt 4f7/2 [Pt(H2NC2H4NH2)2][PtCl2(H2NC2H4NH2)2](ClO4)2 73.00  Click
Pt 4f7/2 [N(C2H5)4]3[Pt(SnCl3)5] 73.00  Click
Pt 4f7/2 PtSi 73.00  Click
Pt 4f7/2 [(Pt(P(C6H5)3)2S)2Ni(C6H5)2PCH2CH2P(C6H5)2)][PF6]2 73.00  Click
Pt 4f7/2 (-Pt((C4H9)3P)2-C&=C-C6H4-C6H4-C&=C-)n 73.00  Click
Pt 4f7/2 [PtCl2(P(C2H5)3)2] 73.10  Click
Pt 4f7/2 [PtCl4((CH3NCH)NHNH(CHNCH3))] 73.10  Click
Pt 4f7/2 [PtCl2(CH2(P(C6H5)2)2)] 73.10  Click
Pt 4f7/2 [PtCl2(NH(C6H5)NHC(S)SCH3)2] 73.10  Click
Pt 4f7/2 K2PtCl4 73.10  Click
Pt 4f7/2 [N(CH3)4]2[Pt(SnCl3)5] 73.10  Click
Pt 4f7/2 [PtCl2(P(C6H5)3)2] 73.10  Click
Pt 4f7/2 [Pt(NH3)2]Cl2 73.10  Click
Pt 4f7/2 Pt/CeO2+TiO2 (80-20) 73.10  Click
Pt 4f7/2 [Pt(NH2(CH2)2NH(CH2)2NH2)NO3]NO3 73.10  Click
Pt 4f7/2 Pt((C4H9)3P)2Cl2 73.10  Click
Pt 4f7/2 [PtCl2(C6H5)2PCH2CH2P(C6H5)2] 73.10  Click
Pt 4f7/2 [Pt(SCN)4(P(C6H5)4)2] 73.20  Click
Pt 4f7/2 [N(CH3)4]2[PtCl2(SnCl3)2] 73.20  Click
Pt 4f7/2 [PtCl2(P(C6H5)3)2] 73.20  Click
Pt 4f7/2 cis-[PtCl2(P(C6H5)3)2] 73.20  Click
Pt 4f7/2 [Pt(NH3)2]Cl2 73.20  Click
Pt 4f7/2 [Pt(NH3)2]Cl2 73.20  Click
Pt 4f7/2 K2PtCl4 73.20  Click
Pt 4f7/2 Pt(C32H16N8) 73.20  Click
Pt 4f7/2 Pt(C32H16N8)(AsF6)x 73.20  Click
Pt 4f7/2 Pt(C32H16N8)(AsF6)x 73.20  Click
Pt 4f7/2 Pt(C32H16N8)(ClO4)0.5 73.20  Click
Pt 4f7/2 C32H16N8Pt(AsF6)0.5 73.20  Click
Pt 4f7/2 C32H16N8Pt(ClO4)0.5 73.20  Click
Pt 4f7/2 C32H16N8Pt 73.20  Click
Pt 4f7/2 PtCl2((C6H5)2PCH2P(C6H5)2) 73.20  Click
Pt 4f7/2 PtCl2 73.20  Click
Pt 4f7/2 [Pt3(ReO3)O3((C6H5)2PCH2P(C6H5)2)3][PF6] 73.20  Click
Pt 4f7/2 [PtCl2(C3NO(CH3)2(NH2))2] 73.30  Click
Pt 4f7/2 [Pt(NH2NH2ClC(S)SCH3)2] 73.30  Click
Pt 4f7/2 [PtBr2((CH3)C3HNO(C6H5))2] 73.30  Click
Pt 4f7/2 [Pt(NH2(CH2)2NH(CH2)2NH2)Cl]Cl 73.30  Click
Pt 4f7/2 [Pt(B10H12)(P(C2H5)3)2] 73.40  Click
Pt 4f7/2 [Pt2(CNCH3)6(PF6)2] 73.40  Click
Pt 4f7/2 K2PtCl4 73.40  Click
Pt 4f7/2 K2PtCl4 73.40  Click
Pt 4f7/2 Pt(NH3)4Br2 73.40  Click
Pt 4f7/2 Pt(NH3)4Br2 73.40  Click
Pt 4f7/2 Pt(NH3)4Cl2 73.40  Click
Pt 4f7/2 Pt(NH3)4Cl2 73.40  Click
Pt 4f7/2 [Pt(H2NC2H4NH2)2][PtI2(H2NC2H4NH2)2](ClO4)2 73.40  Click
Pt 4f7/2 K2PtI6 73.40  Click
Pt 4f7/2 K2PtI6 73.40  Click
Pt 4f7/2 K4[Pt2(P2O5H2)4I].nH2O 73.40  Click
Pt 4f7/2 PtNH3Cl2 73.40  Click
Pt 4f7/2 [Pt2(NCCH3)6].(BF4)2 73.50  Click
Pt 4f7/2 [PtCl2((CH3)C3HNO(C6H5))2] 73.50  Click
Pt 4f7/2 [PtBr2(C3HNO(C6H5)2)2] 73.50  Click
Pt 4f7/2 K4[Pt2(P2O5H2)4].3H2O 73.50  Click
Pt 4f7/2 PtCl2 73.60  Click
Pt 4f7/2 [Pt(CH3CONH)2].H2O 73.60  Click
Pt 4f7/2 [Pt(CH3CONH)2].H2O 73.60  Click
Pt 4f7/2 [PtCl2(C3HNO(C6H5)2)2] 73.60  Click
Pt 4f7/2 K4[Pt2(P2O5H2)4Cl].3H2O 73.60  Click
Pt 4f7/2 [Pt(CN)2(P(C2H5)3)2] 73.70  Click
Pt 4f7/2 [Pt(NH3)2(NO2)2] 73.70  Click
Pt 4f7/2 [Pt(NH3)2(NO2)2] 73.70  Click
Pt 4f7/2 Pt/CeO2+TiO2 (20-80) 73.70  Click
Pt 4f7/2 [Pt(S(NH)C6H4)2] 73.70  Click
Pt 4f7/2 [(C2H5)3P]2Pt(CN)2 73.70  Click
Pt 4f7/2 K4[Pt2(P2O5H2)4Br].3H2O 73.70  Click
Pt 4f7/2 [Pt(C2H3O2)2] 73.80  Click
Pt 4f7/2 PtO 73.80  Click
Pt 4f7/2 K2Pt(CN)4 73.80  Click
Pt 4f7/2 [PtCl2(C8H12)] 73.90  Click
Pt 4f7/2 Pt/CeO2+TiO2 (20-80) 73.90  Click
Pt 4f7/2 [PtCl4(C2H5NH2)4] 74.10  Click
Pt 4f7/2 [PtCl2(C8H12)] 74.10  Click
Pt 4f7/2 K2[Pt(NO2)4] 74.10  Click
Pt 4f7/2 K2[Pt(NO2)4] 74.10  Click
Pt 4f7/2 PtO2 74.10  Click
Pt 4f7/2 PtS2 74.16  Click
Pt 4f7/2 K2PtCl4 74.20  Click
Pt 4f7/2 K2[Pt(CN)4].3H2O 74.20  Click
Pt 4f7/2 PtO 74.20  Click
Pt 4f7/2 PtO 74.20  Click
Pt 4f7/2 [Pt(H2NC2H4NH2)2][PtI2(H2NC2H4NH2)2](ClO4)2 74.30  Click
Pt 4f7/2 [PtCl6(-NHC(CH3)C(OH)C(CH2OH)C(CH2OH)CH-)2] 74.40  Click
Pt 4f7/2 [Pt(NH3)2(NO2)2] 74.40  Click
Pt 4f7/2 Pt(OH)2O 74.50  Click
Pt 4f7/2 Pt(SO4)2.nH2O 74.60  Click
Pt 4f7/2 [PtI2(CH3C(O)NH)4] 74.60  Click
Pt 4f7/2 Pt(OH)4 74.60  Click
Pt 4f7/2 K2PtBr6 74.60  Click
Pt 4f7/2 K2PtBr6 74.60  Click
Pt 4f7/2 PtO2 74.60  Click
Pt 4f7/2 PtO 74.60  Click
Pt 4f7/2 PtO 74.60  Click
Pt 4f7/2 O2/Pt3Ti 74.60  Click
Pt 4f7/2 [Pt(NH2(CH2)2NH(CH2)2NH2)CN]I 74.60  Click
Pt 4f7/2 [Pt(NH2(CH2)2NH(CH2)2NH2)NO2]I 74.60  Click
Pt 4f7/2 [Pt(NH2(CH2)2NH(CH2)2NH2)I]I 74.70  Click
Pt 4f7/2 [PtCl2(CH3C(O)NH)4] 74.80  Click
Pt 4f7/2 [Pt2Br2(CH3C(O)NH)4] 74.90  Click
Pt 4f7/2 PtO2 74.90  Click
Pt 4f7/2 PtO2 74.90  Click
Pt 4f7/2 [Pt(CH3CN)4(PF6)2] 75.00  Click
Pt 4f7/2 [Pt2(NO3)2(CH3C(O)NH)4] 75.00  Click
Pt 4f7/2 [Pt(NO3)2(CH3C(O)NH)4] 75.00  Click
Pt 4f7/2 [Pt(NO2)2(CH3C(O)NH)4] 75.00  Click
Pt 4f7/2 [Pt(H2NC2H4NH2)2][PtCl2(H2NC2H4NH2)2](ClO4)2 75.00  Click
Pt 4f7/2 PtO2 75.00  Click
Pt 4f7/2 K2Pt(OH)6 75.10  Click
Pt 4f7/2 K2Pt(OH)6 75.10  Click
Pt 4f7/2 [PtI2((NH2)2CHCH3)2][Pd((NH2)2CHCH3)2](ClO4)4 75.20  Click
Pt 4f7/2 K2[PtCl6] 75.20  Click
Pt 4f7/2 [PtCl4(P(C2H5)3)2] 75.30  Click
Pt 4f7/2 [PtCl2(H2NCH2CH2NH2)2]Cl2 75.30  Click
Pt 4f7/2 [PtBr2((NH2)2CHCH3)2][Ni((NH2)2CHCH3)2](ClO4)4 75.40  Click
Pt 4f7/2 K2[PtCl6] 75.40  Click
Pt 4f7/2 [Pd(H2NC2H4NH2)2][PtBr2(H2NC2H4NH2)2](ClO4)4 75.40  Click
Pt 4f7/2 K[PtCl6] 75.40  Click
Pt 4f7/2 PtO2 75.40  Click
Pt 4f7/2 [Pt2(C2H3O2)6] 75.50  Click
Pt 4f7/2 PtCl4 75.50  Click
Pt 4f7/2 K2[PtCl6] 75.50  Click
Pt 4f7/2 K2[PtCl6] 75.50  Click
Pt 4f7/2 K2[PtCl6] 75.50  Click
Pt 4f7/2 [PtCl2((NH2)2CHCH3)2][Ni((NH2)2CHCH3)2](ClO4)4 75.60  Click
Pt 4f7/2 [PtCl2((NH2)2CHCH3)2][Pd((NH2)2CHCH3)2](ClO4)4 75.60  Click
Pt 4f7/2 [PtCl2(H2NCH2CH2NH2)2]Cl2 75.60  Click
Pt 4f7/2 K2[PtCl6] 75.60  Click
Pt 4f7/2 PtO2 75.60  Click
Pt 4f7/2 [PtClH(P(C2H5)3)2] 75.70  Click
Pt 4f7/2 K2PtCl6 75.70  Click
Pt 4f7/2 [PtCl4(P(C2H5)3)2] 75.90  Click
Pt 4f7/2 [PtCl4(P(C2H5)3)2] 75.90  Click
Pt 4f7/2 [PtHCl(P(C6H5)3)2] 75.90  Click
Pt 4f7/2 K2[Pt(NO2)6] 75.90  Click
Pt 4f7/2 K2[Pt(NO2)6] 75.90  Click
Pt 4f7/2 [(C2H5)3P]2PtCl4 75.90  Click
Pt 4f7/2 PtCl4 75.90  Click
Pt 4f7/2 K2[Pt(NO2)3(NO3)3] 76.00  Click
Pt 4f7/2 [PtCl2(P(C2H5)3)2] 76.20  Click
Pt 4f7/2 [PtH(SnCl3)(P(C2H5)3)2] 76.20  Click
Pt 4f7/2 [Pt(NH3)6]Cl4 76.30  Click
Pt 4f7/2 [Pt(NH3)6]Cl4 76.30  Click
Pt 4f7/2 [PtCl2(P(C6H5)3)2] 76.30  Click
Pt 4f7/2 [PtCl2(P(C2H5)3)2] 76.40  Click
Pt 4f7/2 [PtCl2(C2H5NH2)4].4H2O 76.40  Click
Pt 4f7/2 K2[PtCl2(CN)4].3H2O 76.60  Click
Pt 4f7/2 K2PtF6 77.60  Click
Pt 4f7/2 K2PtF6 77.60  Click

 


Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 


Advanced XPS Information Section

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies on Platinum Materials

 


 

Expert Knowledge Examples & Explanations

 Periodic Table 


 

Platinum Chemical Compounds

 

Peak-fits and Overlays of Chemical State Spectra

Pure Platinum:  Pt (4f)
Cu (2p3/2) BE = 932.6 eV
PtO2:  Pt (4f)
as measured, NO flood gun, conductive
PtCl4:  Pt (4f)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Pt (4f) Spectra shown Above

Conductive Samples

 

Chemical Shift between Pt and PtO2:  3.9eV
 Chemical Shift between Pt and PtCl4:  xx eV

 

 Periodic Table 


 

Platinum Dioxide (PtO2)
pressed powder

Survey Spectrum from PtO2
Flood gun is OFF, sample conductive
Pt (4f) Chemical State Spectrum from PtO2
Flood gun is OFF, sample conductive

 
O (1s) Chemical State Spectrum from PtO2
Flood gun is OFF, sample conductive
C (1s) Chemical State Spectrum from PtO2
Flood gun is OFF, sample conductive

  .
Valence Band Spectrum from PtO2
Flood gun is OFF, sample conductive
 


Shake-up Features for PtO2

   
   

 


 

Multiplet Splitting Features for Platinum Compounds

Pt metal – NO Splitting for Pt (4s) PtO2  – Splitting Peaks for Pt (4s)
   

 

 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

 


 

Platinum Chemical Compounds

 

Platinum Sulfide, PtS2

 

Survey Pt (4f)


  .
Chemical Shift Overlay S (2p)


Overlay Pt, PtO2 and PtS2  
 
   

 Periodic Table 



 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of Platinum – PtO2

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

 Periodic Table 

 


 

 

XPS Study of UHV Gas Captured by Freshly Ion Etched Platinum
 
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Pto

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
 
 
 
Pt (4f) Signal
 O (1s) Signal C (1s) Signal
     
 
 
Copyright ©:  The XPS Library
 

 

AES Study of UHV Gas Captured by Freshly Ion Etched Platinum

Platinum sheet was ion etched and allowed to react with residual UHV gases overnight – ~14 hr run.

Pt (MNN) Signal:
Pt at front -> PtOx at rear 
Pt KE = XXXX eV,    PtO KE = XXXX eV
O (KLL) Signal:
Pt at front -> PtOx at rear 
O KE = XXXX eV
C (KLL) Signal:
Pt at front -> PtOx at rear 
O KE = XXXX eV
   

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

 

Platinum Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 


XPS Facts, Guidance & Information

 Periodic Table 

    Element   Platinum (Pt)
 
    Primary XPS peak used for Peak-fitting:   Pt (4f7/2)  
    Spin-Orbit (S-O) splitting for Primary Peak:   Spin-Orbit splitting for “f” orbital,  ΔBE = 3.3 eV
 
    Binding Energy (BE) of Primary XPS Signal:   71.1 eV
 
    Scofield Cross-Section (σ) Value:   Pt (4f7/2) = 8.65      Pt (4f5/2) = 6.81
 
    Conductivity:   Pt resistivity =  
Native Oxide suffers Differential Charing
 
    Range of Pt (4f7/2) Chemical State BEs:   70 – 76 eV range   (Pto to PtF2)  
    Signals from other elements that overlap
Pt (4f7/2) Primary Peak:
  Al (2p), Cu (3p)  
    Bulk Plasmons:   ~xx eV above peak max for pure  
    Shake-up Peaks:   xx  
    Multiplet Splitting Peaks:   xx  

 

 

General Information about
XXX Compounds:
  xx  
    Cautions – Chemical Poison Warning  

xx 

 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Pt (4f7/2)

  • FWHM (eV) of Pt (4f7/2) for Pure Pto ~0.9 eV using 25 eV Pass Energy after ion etching
  • FWHM (eV) of Pt (4f7/2) for PtO2 ~1.1 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  71 eV for Pt (4f7/2) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Pt (4f7/2):  Al (2p), Cu (3p)

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.90 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
    • Ag (3d5/2) FWHM (eV) = ~0.85 eV for PE 50 on SSI S-Probe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or     Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.
  • Constraints used on Peak-fitting: typically constrain the peak area ratios based on the Scofield cross-section values
  • Asymmetry for Conductive materials:  20-30% with increased Lorentzian %
  • Peak-fitting “2s” or “3s” Peaks:  Often need to use 50-60% Lorentzian peak-shape

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting.
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of a very few compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Platinum

  • Platinum develops a thick native oxide due to the reactive nature of clean Platinum.
  • The native oxide of PtOx is 1 nm thick.
  • Platinum thin films can have a low level of iron (Fe) in the bulk as a contaminant or due to sputter coater shields
  • Platinum forms a low level of carbide when the surface is argon ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult. The BE for C (1s) is a useful guide.  It is not absolute. Chemical shifts from native oxides can be erroneous.
  • Collect spectra from the valence band, and the principal Pt (4f7/2) peak.  Auger peaks are sometimes used to decide chemical state assignments.
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, and high oxidation state compounds.
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun.
  • Auger signals are sometimes used to discern chemical states when XPS shifts are very small. Auger shifts can be larger than XPS shifts.

 Periodic Table 


 

Data Collection Settings for Platinum (Pt)

  • Conductivity:  Platinum readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Pt (4f7/2) at 71 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  60 – 80 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  50 – 100eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge, As, and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching Pt and various reactive surfaces.  Carbides form due to the presence of residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


 
 
Gas Phase XPS or UPS Spectra
 

 
     
     
     
     
     
     
     
     
     
 
 
 
 

 

Chemical State Spectra from Literature
 
 
xxx
 



End of File