Ruo RuO2 Native RuOx Ruo/Al2O3 RuCl3 RuO4 Ruo/C RuI3 RuS2 Sr2RuO4 CaRuO3

Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                     XPS Database of Polymers               → Six (6) BE Tables



Ruthenium (Ru)

 

Natural Crystal – Ruo Ruthenium – Ruo Ruthenium Sulfide – RuS2

 

  Page Index
  • Expert Knowledge Examples 


Ruthenium (Ruo) Metal

Peak-fits, BEs, FWHMs, and Peak Labels



Ruthenium (Ruo) Metal
Ru (3d) Spectrum – raw spectrum

Ruthenium (Ruo) Metal
Peak-fit of Ru (3d) Spectrum (w/o asymm)

 Periodic Table – HomePage  
Ruthenium (Ruo) Metal
Ru (3d) Spectrum – extended range 
Ruthenium (Ruo) Metal
Peak-fit of Ru (3d) Spectrum (w asymm)
 

 

 Ruthenium (Ruo) Metal
Ru (3s and 3p) Spectrum
Ruthenium (Ruo) Metal
Ru (4s and 4p) Spectrum

 

Survey Spectrum of Ruthenium (Ruo) Metal
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Ruthenium, (Ruo) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
Ru (3s) 586 2.57 13.3
Ru (3p1/2) 484 3.44 14.6
Ti (2p) overlaps Ru (3p3/2) 461 6.78 14.6
C (1s) overlaps Ru (3d3/2) 284.08 5.10 16.5
Ru (3d5/2) 279.95 7.39 16.5
Al (2p) overlaps Ru (4s) 75 0.519 18.6
As (3d) overlaps Ru (4p) 43 1.59 18.9

σ:  abbreviation for the term Scofield Photoionization Cross-Section which are used with IMFP and TF to generate RSFs and atom% quantitation

 

Auger Peaks

Expected Bandgap for RuO2: 2 – 3 eV
Work Function for RuO2:  xx eV

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 


 

 

Valence Band Spectrum from Ruthenium, Ruo Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

 


 

Plasmon Peaks from Ruo Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Ru (3d) – Extended Range Spectrum Ru (3d) – Extended Range Spectrum – Vertically Zoomed
 Periodic Table 

 

Ru (LMM) Auger Peaks from Ruo Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Ruo Metal – main Auger peak Ruo Metal – all Auger peaks
   

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Artefacts Caused by Argon Ion Etching

Ruthenium Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Ruo

can form when Argon Ions are used
to removed surface contamination

na na

 

Side-by-Side Comparison of
Ruo metal, Ru Native Oxide & Ruthenium Oxide, RuO2
Peak-fits, BEs, FWHMs, and Peak Labels

Ru Native Oxide (RuOx) Ru – pure element (Ruo)
Ru (3d) – raw spectrum Ru (3d) – raw spectrum

Overlay of Ru (3d) from Ruo metal and Ru Native Oxide
to reveal the presence of C (1s) at ~285 eV and RuOx


 

Ru Native Oxide RuO2
Ru (3d) from Ru Native Oxide
on Ruthenium
Flood Gun OFF,  As-Measured, C (1s) at 284.9 eV 
Ru (3d) from RuO2 – pellet or fresh bulk
Flood Gun OFF
Sample Conductive

 Periodic Table 

   
Ru Native Oxide RuO2
C (1s) from Ru Native Oxide
on Ruthenium
As-Measured, C (1s) at 284.9 eV (Flood Gun OFF)

C (1s) from RuO2 – pellet or fresh bulk
Flood Gun OFF
Sample Conductive

 Periodic Table 

   
Ru Native Oxide RuO2
O (1s) from Ru Native Oxide
on Ruthenium
As-Measured, C (1s) at 284.9 eV (Flood Gun OFF)

O (1s) from RuO2 – pellet or fresh bulk
Flood Gun ON
Sample Conductive

 Periodic Table

 



 

Survey Spectrum of Ru Native Oxide
with Peaks Integrated, Assigned and Labelled

 Periodic Table 


 

 

Survey Spectrum of Ruthenium Oxide, RuO2
with Peaks Integrated, Assigned and Labelled


 Periodic Table  


Overlays of Ru (3d) Spectra for:
Ru Native Oxide and RuO2

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 

 Overlay of Ruo metal and Ru Native Oxide – Ru (3d)
Flood gun OFF
Samples conductive
 Overlay of Ruo metal and RuO2 – Ru (3d)
Flood gun OFF, Samples conductive
RuO2 Chemical Shift ~1.0 eV

 Periodic Table  Copyright ©:  The XPS Library 

 

Overlay of Ru (3d):
Ruo Metal, Ru Native Oxide, & RuO2   

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
Ruo, RuO2 

Ruo
Ion etched clean
RuO2 – pellet
Flood gun is OFF, sample conductive


Overlay of Valence Band Spectra:
for Ruo metal and RuO2

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Ruthenium Minerals, Gemstones, and Chemical Compounds

 

Iridarsenite – (Ir, Ru)As2 Ruthenium on Carbon Catalyst Pentlandite – Ru,Ir Sulfide Ruthenium Oxide – RuO2

 Periodic Table 



 

Six (6) Chemical State Tables of Ru (3d5/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (3d5/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Ru (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Ru 44 Ru (N*12) 279.9 eV 280.2 eV Avg BE – NIST
Ru 44 Ru – element 280.0 eV 285.0 eV The XPS Library
Ru 44 RuO2 (N*5) 280.3 eV Avg BE – NIST
Ru 44 Ru-2O3 281.1 eV 285.0 eV The XPS Library
Ru 44 Ru-Cl3 (N*2) 281.8 eV 282.1 eV Avg BE – NIST
Ru 44 RuO3 (N*2) 282.5 ev 283.3 eV Avg BE – NIST
Ru 44 BaRuO4 (N*1) 284.2 eV 284.8 eV Avg BE – NIST
Ru 44 Ru-(OH)3 285.0 eV The XPS Library
Ru 44 Ru-CO3 285.0 eV The XPS Library
Ru 44 Ru-S2 285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (3d5/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Ru (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Ru (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV),
Ru (3d5/2)
Ru metal 280.2
RuO2 280.7

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Ru (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Ru (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Ru 3d5/2 Ru 280.1 ±0.2 279.9 280.2
Ru 3d5/2 Ru(NH3)5N2Br2 280.6 ±0.3 280.3 280.8
Ru 3d5/2 RuO2 280.8 ±0.3 280.5 281.0
Ru 3d5/2 RuCl3 281.8 ±0.2 281.6 282.0
Ru 3d5/2 Ru(NH3)5N2I2 282.3 ±0.3 282.0 282.5
Ru 3d5/2 RuO3 282.6 ±0.3 282.3 282.8
Ru 3d5/2 Ru(NH3)5N2Cl2 282.6 ±0.3 282.3 282.8
Ru 3d5/2 RuO4 283.3 ±0.3 283.0 283.5

 

 Periodic Table 



 
 

Histograms of NIST BEs for Ru (3d5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  280.0 eV for Ruo based on 11 literature BEs Histogram indicates:  280.9 eV for RuO2 based on 7 literature BEs

Table #6


NIST Database of Ru (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Ru 3d5/2 [RuCl3(P(CH3)2C6H5)3] 276.60  Click
Ru 3d5/2 Ru 279.00  Click
Ru 3d5/2 [Ru(CO)2(SCH3)2] 279.70  Click
Ru 3d5/2 [Ru(C2H8N2)2][ZnCl4] 279.70  Click
Ru 3d5/2 (C10H15)(C13H9)Ru 279.80  Click
Ru 3d5/2 Ru 279.90  Click
Ru 3d5/2 Ru 279.90  Click
Ru 3d5/2 Ru 279.90  Click
Ru 3d5/2 Ru 279.96  Click
Ru 3d5/2 Ru 280.00  Click
Ru 3d5/2 Ru 280.00  Click
Ru 3d5/2 Ru 280.00  Click
Ru 3d5/2 Ru 280.02  Click
Ru 3d5/2 Ru 280.04  Click
Ru 3d5/2 Ru 280.10  Click
Ru 3d5/2 Ru 280.10  Click
Ru 3d5/2 Ru 280.10  Click
Ru 3d5/2 (C10H15)2Ru 280.10  Click
Ru 3d5/2 Ru 280.20  Click
Ru 3d5/2 Ru 280.20  Click
Ru 3d5/2 [Ru(NH3)5(C5H5N)](PF6)2 280.20  Click
Ru 3d5/2 Ru/RuOx 280.20  Click
Ru 3d5/2 Ru/RuOx 280.20  Click
Ru 3d5/2 Ru/RuOx 280.20  Click
Ru 3d5/2 RuO2 280.30  Click
Ru 3d5/2 (C10H15)(C9H7)Ru 280.30  Click
Ru 3d5/2 (C10H15)(C5H5)Ru 280.40  Click
Ru 3d5/2 [Ru(NH3)5(N2)]Br2 280.50  Click
Ru 3d5/2 (C10H15)(C7H7O)Ru 280.50  Click
Ru 3d5/2 (P(C2H5)2-C6H5)2ClRuCl3Ru(P(C2H5)2-C6H5)3 280.50  Click
Ru 3d5/2 [Ru(NH3)5(NCCH3)](PF6)2 280.50  Click
Ru 3d5/2 RuO2 280.60  Click
Ru 3d5/2 RuO2 280.70  Click
Ru 3d5/2 [As(CH3-C6H4)3]2ClRuCl3RuCl[As(CH3-C6H4)3]2 280.70  Click
Ru 3d5/2 (P(C6H5)3)2ClRuCl3Ru(CO)(P(C6H5)3)2 280.70  Click
Ru 3d5/2 (P(C6H5)3)2ClRuCl3Ru(CS)(P(C6H5)3)2 280.70  Click
Ru 3d5/2 [Ru2Br3(P(CH3)2-C6H5)6]Br 280.70  Click
Ru 3d5/2 [Ru2Cl3(P(C2H5)2-C6H5)6]Cl 280.80  Click
Ru 3d5/2 [As(CH3-C6H4)3]3RuCl3RuCl2[As(CH3-C6H4)3] 280.80  Click
Ru 3d5/2 RuO2 280.80  Click
Ru 3d5/2 (CH2CH(C5H3N)(C5H3N)CH3)2(C6H5N)2RuPF6 280.80  Click
Ru 3d5/2 [Ru(NH3)5(N2)]I2 280.90  Click
Ru 3d5/2 RuO2 280.90  Click
Ru 3d5/2 (C5H5)2Ru 280.90  Click
Ru 3d5/2 RuCl2(P(C6H5)3)3 280.90  Click
Ru 3d5/2 RuO2 281.00  Click
Ru 3d5/2 (C10H15)(C5Cl5)Ru 281.00  Click
Ru 3d5/2 [Ru(NH3)5(C4H4N2)](PF6)2 281.00  Click
Ru 3d5/2 RuCl3 281.00  Click
Ru 3d5/2 [Ru(NO)2(P(C6H5)3)2] 281.10  Click
Ru 3d5/2 K4Ru(CN)6 281.10  Click
Ru 3d5/2 Pb2.15Ru1.85O6.5 281.20  Click
Ru 3d5/2 Pb2.06Ru1.94O6.5 281.20  Click
Ru 3d5/2 Pb2.62Ru1.38O6.5 281.40  Click
Ru 3d5/2 [Ru(NH3)5(C6H6O4)](PF6)2 281.50  Click
Ru 3d5/2 [(C10H8N2)2(H2O)RuORu(C10H8N2)2ORu(H2O)(C10H8N2)2](ClO4)6.7H2O 281.50  Click
Ru 3d5/2 Bi2.39Ru1.61O7-x 281.50  Click
Ru 3d5/2 (C6H4S4)RuCl3.2H2O 281.50  Click
Ru 3d5/2 (P(C6H5)3)2ClRuCl3Ru(CO)(P(C6H5)3)2 281.70  Click
Ru 3d5/2 (P(C6H5)3)2ClRuCl3Ru(CS)(P(C6H5)3)2 281.70  Click
Ru 3d5/2 [As(CH3-C6H4)3]3RuCl3RuCl2[As(CH3-C6H4)3] 281.70  Click
Ru 3d5/2 Bi2.86Ru1.14O7-x 281.70  Click
Ru 3d5/2 RuCl3 281.80  Click
Ru 3d5/2 RuCl3(P(CH3)2C6H5)3 281.90  Click
Ru 3d5/2 RuOx/Ru 281.90  Click
Ru 3d5/2 [RuCl3(P(C6H5)3)2(CH3C6H4NN)] 282.00  Click
Ru 3d5/2 [RuCl3(CH3C6H4NNH)(P(C6H5)3)2] 282.00  Click
Ru 3d5/2 [RuBr(CO)2(SCH3)2] 282.00  Click
Ru 3d5/2 [P(C6H5)2(C7H7)]3RuCl3RuCl2[P(C6H5)2(C7H7)] 282.00  Click
Ru 3d5/2 RuOx/Ru 282.00  Click
Ru 3d5/2 RuOx/Ru 282.00  Click
Ru 3d5/2 RuCl3.3H2O 282.10  Click
Ru 3d5/2 RuO2 282.10  Click
Ru 3d5/2 [Ru(NH3)5(N2)]I2 282.20  Click
Ru 3d5/2 RuCl3.xH2O 282.20  Click
Ru 3d5/2 [RuCl3(ClC6H4NN)(P(C6H5)3)2] 282.30  Click
Ru 3d5/2 [RuCl(CH3C6H4NN)2(P(C6H5)3)2].BF4 282.30  Click
Ru 3d5/2 [Ru(NH3)6]Cl3 282.30  Click
Ru 3d5/2 [Ru(NH3)5(C5H8N2)]Cl3 282.40  Click
Ru 3d5/2 [Ru(NH3)5(C7H10N2)]Cl3 282.40  Click
Ru 3d5/2 [Ru(NH3)5(C5H7N2)]Cl3 282.40  Click
Ru 3d5/2 [Ru(NH3)5(N2)]Cl2 282.50  Click
Ru 3d5/2 [RuCl3(NO2C6H4NN)(P(C6H5)3)2] 282.50  Click
Ru 3d5/2 RuO3 282.50  Click
Ru 3d5/2 [Ru(NH3)5(C5H6N2)]Cl3 282.50  Click
Ru 3d5/2 Pb2.15Ru1.85O6.5 282.70  Click
Ru 3d5/2 Bi2.39Ru1.61O7-x 282.70  Click
Ru 3d5/2 Pb2.06Ru1.94O6.5 282.70  Click
Ru 3d5/2 [RuCl(NO)2(P(C6H5)3)2].BF4 282.90  Click
Ru 3d5/2 [RuCl3(NO)((C6H5)3P)2] 282.90  Click
Ru 3d5/2 Pb2.62Ru1.38O6.5 283.00  Click
Ru 3d5/2 Bi2.86Ru1.14O7-x 283.00  Click
Ru 3d5/2 RuO3 283.30  Click
Ru 3d5/2 BaRuO4 284.20  Click
Ru 3d5/2 Ru 285.00  Click
Ru 3d5/2 Fe/Ru 285.00  Click

 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

 

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies on Ruthenium Materials

 

 


 

Expert Knowledge Explanations

 

 Periodic Table 


 

 

Ruthenium Chemical Compounds


Peak-fits and Overlays of Chemical State Spectra

Pure Ruthenium, Ruo:  Ru (3d)
Cu (2p3/2) BE = 932.6 eV
RuO2:  Ru (3d)
C (1s) BE = 285.0 eV
RuF4: Ru (3d)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Ru (3d) Spectra shown Above

C (1s) BE = 285.0 eV

 

Chemical Shift between Ru and RuO2:  ~1.0 eV

 Periodic Table 


 

Ruthenium Oxide (RuO2)
pressed pellet 

Survey Spectrum from RuO2
Flood gun is OFF, sample is conductive
Ru (3d) Chemical State Spectrum from RuO2
Flood gun is OFF, sample is conductive

 
O (1s) Chemical State Spectrum from RuO2
Flood gun is OFF, sample is conductive
C (1s) Chemical State Spectrum from RuO2
Flood gun is OFF, sample is conductive

 
Valence Band Spectrum from RuO2
Flood gun is OFF, sample is conductive
Auger Signals from RuO2
Flood gun is OFF, sample is conductive
na


Shake-up Features for RuO2
(compare metal to RuO2)

Ruo metal RuO2

 


 

 

Ruthenium Chemical Compounds

 Periodic Table 



 

Quantitation Details and Information

 

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of Ruthenium – RuO2

 

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

 

 Periodic Table 

 


 

 

Flood Gun Effect on Native Oxide of Ruthenium

 

Native Oxide of Ruthenium Sheet – Sample GROUNDED

 


 

Native Oxide of Ruthenium Sheet – Sample Grounded

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Ru (3d) O (1s) C (1s)
 Periodic Table 

 

 

 

XPS Study of UHV Gas Captured by Freshly Ion Etched Ruthenium
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Ruo

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
Ru (3d) Signal
Reverse View
 O (1s) Signal
Reverse View
VB Signal
Reverse View
Copyright ©:  The XPS Library

 

 

Ruthenium Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 

XPS Facts, Guidance & Information

 Periodic Table 

    Element Ruthenium (Ru)
 
    Primary XPS peak used for Peak-fitting: Ru (3d)  
    Spin-Orbit (S-O) splitting for Primary Peak: Spin-Orbit splitting for “d” orbital, ΔBE = 5.1 eV
 
    Binding Energy (BE) of Primary XPS Signal: 280 eV
 
    Scofield Cross-Section (σ) Value: Ru (3d5/2) = 7.39     Ru (3d3/2) = 5.10
 
    Conductivity: Ru resistivity =  
Native Oxide suffers Differential Charing
 
    Range of Ru (3d5/2) Chemical State BEs: 279 – 284 eV range   (Ruo to RuF2)  
Signals from other elements that overlap
Ru (3d3/2) Primary Peak:
  C (1s)
Bulk Plasmons:   ~xx eV above peak max for pure
Shake-up Peaks: xx
Multiplet Splitting Peaks:   xx

 

 

General Information about
XXX Compounds:
  xx  
Cautions – Chemical Poison Warning

xx 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Ru (3d5/2)

 

  • FWHM (eV) of Ru (3d5/2) for Pure Ruo ~0.6 eV using 25 eV Pass Energy after ion etching:
  • FWHM (eV) of Ru (3d5/2) for RuO2 ~0.8 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  280 eV for Ru (3d5/2) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Ru (3d5/2):  C (1s) overlaps Ru (3d3)

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

 

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Ruthenium

 

  • Ruthenium develops a thick native oxide due to the reactive nature of clean Ruthenium.
  • The native oxide of Ru Ox is 1-3 nm thick.
  • Ruthenium thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Ruthenium forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

 

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

 

  • Chemical state differentiation can be difficult
  • Collect principal Ru (3d) peak
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Ruthenium (Ru)

 

  • Conductivity:  Ruthenium readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Ru (3d5/2) at 280 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  270 – 300 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  270 – 320 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides appear after ion etching Ru and various reactive surfaces.  Carbides form due to the presence of residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


Gas Phase XPS or UPS Spectra


 

Chemical State Spectra from Literature
From Thermo Scientific Website
Native Ru Oxide
shows overlap with C (1s)



End of File