Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table                   XPS Database of Polymers              → Six (6) BE Tables


 

Sodium (Na)

Natrium

Villiaumite – NaF Sodium Metal – Nao (in oil) Halite – NaCl

 

  Page Index
  • Peak-fits and Overlays of Na Compounds
  • Expert Knowledge Explanations


Sodium (Na
o) Metal

Peak-fits, BEs, FWHMs, BE Tables, and Peak Labels

 


 
Sodium Metal (Nao)
Na (1s) Spectrum – raw
Ion etched clean
Flood Gun OFF – conductive metal
Sodium Metal (Nao)
Na (1s) Spectrum – Peak-fit
Ion etched clean
Flood Gun OFF – conductive metal

.
Sodium Metal (Nao)
Na (Auger) Peaks – raw
Ion etched clean
Flood Gun OFF – conductive metal
Sodium Metal (Nao)
Na (2p-2s) Spectrum – raw
Ion etched clean
Flood Gun OFF – conductive metal


Survey Spectrum of Sodium (Na
o) Metal
with Peaks Integrated, Assigned and Labelled

 

 Periodic Table


 

XPS Signals for Sodium, (Nao) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Sodium Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
I (3s) overlaps Na (1s) 1071 8.52 21.2
Ir (4f), Mo (4s) & Ni (3p) overlap Na (2s) 63 0.422 56.5
Ge (3d), Sb (4d), W (4f) & K (3s) Na (2p) 32 0.1941 57.5

σ:  abbreviation for the term Scofield Photoionization Cross-Section which are used with IMFP and TF to produce RSFs and atom% quantitation

Plasmon Peaks

Energy Loss Peaks

Auger Peaks

Energy Loss Peak for Compounds:  ~23 eV above each peak max
Intrinsic Bulk Plasmon Peaks:  ~6 eV steps
Expected Bandgap for NaCl: ~9 eV  at 77 K

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 


 

Plasmon Peaks from Nao Metal
Fresh exposed bulk produced by extensive Ar+ ion etching

Na (1s) – Plasmon Peaks Na (1s) – Expanded and Labelled

 

Na (KLL) Auger Peaks from Nao Metal
Fresh exposed bulk produced by extensive Ar+ ion etching

 

Sodium (Na) Auger Peaks

 

Side-by-Side Comparison of
Nao, NaF, NaCl, NaBr, NaI
Peak-fits, BEs, FWHMs, and Peak Labels

 


  .
Pure Metal, Nao
Na (1s) from Sodium metal – raw
Ion Etched
Sodium Fluoride, NaF
Peak-fit of Na (1s) from NaF, natural crystal
freshly cleaved in lab air
Charge Referenced to 285.0 eV


   .
Sodium Fluoride, NaF
Peak-fit of Na (1s) from NaF, natural crystal
freshly cleaved in lab air
Charge Referenced to 285.0 eV
Sodium Chloride, NaCl, single crystal
Peak-fit of Na (1s) from NaCl, xtal
freshly cleaved in lab air
Charge Referenced to 285.0 eV


 
Sodium Bromide, NaBr, crystallites
Peak-fit of Na (1s) from NaBr, xtal

freshly crushed in lab air
Charge Referenced to 285.0 eV
Sodium Iodide, NaI, crystallites
Peak-fit of Na (1s) from NaI xtal
freshly crushed in lab air
Charge Referenced to 285.0 eV

 



Overlay of Na (1s) Peak
from Sodium Nao Metal, NaI, and NaF



Overlay of Na (1s) Peak
from NaF, NaCl, NaBr, and NaI


 

Survey Spectrum of Sodium Fluoride (NaF)
with Peaks Integrated, Assigned and Labelled

 


 

Survey Spectrum of Sodium Chloride (NaCl)
with Peaks Integrated, Assigned and Labelled

 


 

Survey Spectrum of Sodium Bromide (NaBr)
with Peaks Integrated, Assigned and Labelled

 


 

Survey Spectrum of Sodium Iodide (NaI)
with Peaks Integrated, Assigned and Labelled

 

 


 

Overlay of C (1s) Spectra
from NaHCO3 and Na2CO3

Sodium Carbonate, Na2CO3
Peak-fit of C (1s) from Na2CO3
, powder
pressed onto stage
Charge Referenced to 285.0 eV
Sodium Hydrogen Carbonate, NaHCO3
Peak-fit of C (1s) from NaHCO3
, crystallites
freshly crushed
Charge Referenced to 285.0 eV


Overlay of C (1s) Spectra
from NaHCO3 and Na2CO3 



Overlay of Na (1s) Spectra
from NaHCO3 and Na2CO3
Sodium Carbonate (Na2CO3)
Peak-fit of Na (1s) from Na2CO3, powder
pressed onto stage
Charge Referenced to 285.0 eV
Sodium Hydrogen Carbonate (NaHCO3)
Peak-fit of Na (1s) from NaHCO3, crystallites
freshly crushed
Charge Referenced to 285.0 eV
 

.
Overlay of Na (1s) Spectra
from NaHCO3 and Na2CO3

Features Observed

  • xx
  • xx
  • xx

 

Sodium, Na (Auger) Peaks
from NaHCO3 and Na2CO3
often overlap O (1s) BE Spectra

 

Na (Auger) Peaks overlap O (1s) of Na2CO3 Na (Auger) Peaks overlap O (1s) of NaHCO3

 

Overlap of O (1s) spectra
from NaHCO3 and Na2CO3
showing Na (Auger) overlaps

 Periodic Table 

Valence Band Spectra
NaF, NaCl, NaBr, NaI

 

Sodium Fluoride, NaF
Valence Band
Sodium Chloride, NaCl
Valence Band

 


Sodium Bromide, NaBr
Valence Band
Sodium Iodide, NaI
Valence Band

 

Overlay of Valence Band Spectra
from NaF, NaCl, NaBr and NaI

Copyright ©:  The XPS Library 



 

Sodium Minerals, Gemstones, and Chemical Compounds

 

Dawsonite – NaAlCO3(OH)2 Nahcolite – NaHCO3  Glauberite – Na2Ca(SO4)2 Natrolite – Na2Al2Si3O10 • 2H2

 Periodic Table 

 



 

Six (6) Chemical State Tables of Na (1s) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

→  Periodic Table 

 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • There are uncertainties and error ranges in nearly all BEs 
    • Flood guns
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop.
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE.
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE.

 →  Periodic Table 


Table #1

Na (1s) Chemical State BEs from:  The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest NIST BE Hydrocarbon C (1s) BE  Source
Na 11 Na – element  (N*4) 1070.8 eV 1071.8 eV 284.8 eV Avg BE – NIST
Na 11 Na2WO4 1070.9 eV 284.8 eV Avg BE – NIST
Na 11 Na2O (NaHCO3) 1071.1 eV 1071.5 eV 285.0 eV The XPS Library
Na 11 Na-F (N*3) 1071.2 eV 1072.7 eV 285.0 eV The XPS Library
Na 11 NaHCO3 1071.3 eV 285.0 eV The XPS Library
Na 11 Na2CO3 1071.5 eV 285.0 eV The XPS Library
Na 11 Na – element 1071.6 eV PHI Handbook
Na 11 Na2W2O7 1071.7 eV 285.0 eV The XPS Library
Na 11 Na2Si3O7 1071.9 eV 285.0 eV The XPS Library
Na 11 Na2SO4 1072.1eV 285.0 eV The XPS Library
Na 11 Na-Br 1072.1 eV 285.0 eV The XPS Library
Na 11 Na-Cl 1072.3 eV 285.0 eV The XPS Library
Na 11 Na2O (N*1) 1072.5 eV 284.8 eV Avg BE – NIST
Na 11 Na-Br (N*1) 1072.5 eV 284.8 eV Avg BE – NIST
Na 11 Na3AlF6 1072.5 eV 285.0 eV The XPS Library
Na 11 Na-F 1072.6 eV 285.0 eV The XPS Library
Na 11 Na-I 1073.1 eV 285.0 eV The XPS Library

 

Charge Referencing

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • Binding Energy Scale Calibration expects Cu (1s3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (SO) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 →  Periodic Table 


Table #2

Na (1s) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

Copyright ©:  Ulvac-PHI


Table #3

Na (1s) Chemical State BEs from:  Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy, Na 1s (eV)
Sodium compounds 1071–1071.5

Copyright ©:  Thermo Scientific website


Table #4

Na (1s) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

Copyright ©:  Mark Beisinger

 


Table #5

Na (1s) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

Element Level Compound B.E.(eV) min max
Na 1s NaF 1071.2 ±0.2 1071.0 1071.3
Na 1s Na4P2O7 1071.2 ±0.4 1070.8 1071.6
Na 1s Na2SO4 1071.3 ±0.3 1071.0 1071.5
Na 1s Na2S2O3 1071.5 ±0.2 1071.3 1071.7
Na 1s NaBr 1071.6 ±0.2 1071.4 1071.8
Na 1s Na2CO3 1071.7 ±0.2 1071.5 1071.8
Na 1s NaI 1071.8 ±0.3 1071.5 1072.0
Na 1s Na 1072.0 ±0.3 1071.7 1072.2
Na 1s NaCl 1072.0 ±0.5 1071.5 1072.5
Na 1s NaH2PO4 1072.1 ±0.3 1071.8 1072.3
Na 1s Mol Sieve 1072.2 ±0.4 1071.8 1072.6


 

Histograms of NIST BEs from Na (1s)

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates Na (1s) BE = 1071.4 eV for Pure Sodium Metal
based on 4 literature BEs
Histogram indicates Na (1s) BE = 1071.5 eV for NaF
based on 4 literature BEs

Histogram indicates Cl (2p) BE = 196.4 eV for Cl in NaCl
based on 8 literature BEs
Histogram indicates Na (1s) BE = 1071.5 eV for NaI
based on 2 literature BEs


Table #6

 

NIST Database of Na (1s) Binding Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Na 1s (SiO2)0.517(Na2O)0.299(Fe2O3)0.18 1070.30  Click
Na 1s Na(CS2OCH(CH3)CH3) 1070.40  Click
Na 1s Na8(AlSiO4)6Cl2(OH)n 1070.45  Click
Na 1s Na2Cr2O7 1070.60  Click
Na 1s Na2C2O4 1070.80  Click
Na 1s NaF 1070.80  Click
Na 1s NaSc(C2O4)2.4H2O 1070.80  Click
Na 1s NaN3 1070.80  Click
Na 1s Na 1070.80  Click
Na 1s Na2SeO3 1070.80  Click
Na 1s Na4P2O7 1070.80  Click
Na 1s NaAsO2 1070.90  Click
Na 1s Na2MoO4 1070.90  Click
Na 1s Na3PO4 1070.90  Click
Na 1s Na2CrO4 1071.00  Click
Na 1s NaC2H3O2 1071.10  Click
Na 1s NaH2PO2 1071.10  Click
Na 1s NaH2PO2 1071.10  Click
Na 1s Na2SnO3.3H2O 1071.10  Click
Na 1s NaHCO2 1071.10  Click
Na 1s Na2TeO4 1071.10  Click
Na 1s Na3PO4 1071.10  Click
Na 1s NaClO4 1071.10  Click
Na 1s (SiO2)0.667(Na2O)0.287(Fe2O3)0.046 1071.15  Click
Na 1s (SiO2)0.618(Na2O)0.298(Fe2O3)0.085 1071.15  Click
Na 1s NaF 1071.20  Click
Na 1s Na(HSCH2COO) 1071.20  Click
Na 1s NaCl 1071.20  Click
Na 1s Na2SO4 1071.20  Click
Na 1s Na2SO4 1071.20  Click
Na 1s NaHCO3 1071.30  Click
Na 1s NaF 1071.30  Click
Na 1s Na(C6H5SO3) 1071.30  Click
Na 1s Na2SO3 1071.30  Click
Na 1s NaBiO3 1071.30  Click
Na 1s Na3PO4 1071.30  Click
Na 1s (SiO2)0.563(Na2O)0.304(Fe2O3)0.13 1071.30  Click
Na 1s NaNO3 1071.40  Click
Na 1s Na 1071.40  Click
Na 1s NaBr 1071.40  Click
Na 1s NaI 1071.40  Click
Na 1s Na2SO3 1071.40  Click
Na 1s Na2CrO4 1071.40  Click
Na 1s Mol-Sieve-Y 1071.50  Click
Na 1s Na2CO3 1071.50  Click
Na 1s Na2CO3 1071.50  Click
Na 1s Na2ZrF6 1071.50  Click
Na 1s Na2HPO4 1071.50  Click
Na 1s NaCl 1071.50  Click
Na 1s NaCl/O2/Cu 1071.50  Click
Na 1s Na2TiF6 1071.60  Click
Na 1s Na2HPO4 1071.60  Click
Na 1s NaNO2 1071.60  Click
Na 1s NaCl 1071.60  Click
Na 1s NaCl 1071.60  Click
Na 1s Na2SSO3 1071.60  Click
Na 1s NaPO3 1071.60  Click
Na 1s Na2Cr2O7 1071.60  Click
Na 1s Na4P2O7 1071.60  Click
Na 1s NaC2H3O2 1071.70  Click
Na 1s Na2CO3 1071.70  Click
Na 1s Na2GeF6 1071.70  Click
Na 1s Na2SiF6 1071.70  Click
Na 1s NaTaF6 1071.70  Click
Na 1s NaBr 1071.70  Click
Na 1s NaI 1071.70  Click
Na 1s NaPO3 1071.70  Click
Na 1s (SiO2)0.694(Na2O)0.306 1071.70  Click
Na 1s Na 1071.76  Click
Na 1s (-CH2CH(C6H4S(O)(O)ONa)-)n 1071.76  Click
Na 1s Na2BeF4 1071.80  Click
Na 1s Na3AlF6 1071.80  Click
Na 1s Na3TaF8 1071.80  Click
Na 1s Na 1071.80  Click
Na 1s Na2PdCl4 1071.80  Click
Na 1s NaCl 1071.80  Click
Na 1s Na2MoO4 1071.80  Click
Na 1s NaClO4 1071.80  Click
Na 1s (NaPO3)3 1071.80  Click
Na 1s Mol-Sieve-A 1071.82  Click
Na 1s NaBeF3 1071.90  Click
Na 1s Na2TaF7 1071.90  Click
Na 1s Na2[IrCl6] 1071.90  Click
Na 1s Mol-Sieve-A 1071.95  Click
Na 1s NaH2PO4 1072.00  Click
Na 1s Na2WO4 1072.00  Click
Na 1s O2/Na/O2/V/Cu 1072.00  Click
Na 1s Na2SiF6 1072.10  Click
Na 1s Na(OC(O)C(CH3)CH2) 1072.20  Click
Na 1s Na[AlSi3O8] 1072.20  Click
Na 1s NaCl/Ni/Cu 1072.20  Click
Na 1s NaCl/Ni/Cu 1072.20  Click
Na 1s NaCl/Ni/Cu 1072.20  Click
Na 1s Na[AlSi3O8] 1072.23  Click
Na 1s Mol-Sieve-X 1072.27  Click
Na 1s NaCl 1072.30  Click
Na 1s Na2Al2Si3O10.2H2O 1072.37  Click
Na 1s NaCrO2 1072.40  Click
Na 1s NaBr 1072.50  Click
Na 1s NaCl 1072.50  Click
Na 1s Na2SO4 1072.50  Click
Na 1s Na2O 1072.50  Click
Na 1s Al0.041Si0.264Na0.04K0.02O0.635 1072.50  Click
Na 1s Mol-Sieve-X 1072.55  Click
Na 1s Mol-Sieve-Y 1072.55  Click
Na 1s NaOH 1072.59  Click
Na 1s NaCl/Cu 1072.60  Click
Na 1s NaCl/Ni/Cu 1072.60  Click
Na 1s NaCl/Ni/Cu 1072.60  Click
Na 1s O2/Na/O2/V/Cu 1072.60  Click
Na 1s Na/O2/V/Cu 1072.60  Click
Na 1s H3Na45(AlO2)56(SiO2)136 1072.60  Click
Na 1s Pt4H3Na45(AlO2)56(SiO2)136 1072.60  Click
Na 1s (Na/Al/Mg)Si4O10(OH)2.nH2O 1072.70  Click
Na 1s NaBF4 1072.70  Click
Na 1s NaF 1072.70  Click
Na 1s O2/Na/O2/V/Cu 1072.70  Click
Na 1s Na/O2/V/Cu 1072.70  Click
Na 1s CH3COOH/O2/Na/O2/Na/O2/V/Cu 1072.70  Click
Na 1s CH3COOH/O2/Na/O2/Na/O2/V/Cu 1072.70  Click
Na 1s Pt4H20Na28(AlO2)56(SiO2)136 1072.70  Click
Na 1s Pt4H11Na37(AlO2)56(SiO2)136 1072.70  Click
Na 1s NaCl 1072.80  Click
Na 1s Na2SO3 1072.80  Click
Na 1s O2/Na/O2/V/Cu 1072.80  Click
Na 1s O2/Na/O2/Na/O2/V/Cu 1072.80  Click
Na 1s Pt4H7Na41(AlO2)56(SiO2)136 1072.80  Click
Na 1s H20Na28(AlO2)56(SiO2)136 1072.80  Click
Na 1s H7Na41(AlO2)56(SiO2)136 1072.80  Click
Na 1s H11Na37(AlO2)56(SiO2)136 1072.80  Click
Na 1s Na(AlSi2O6).H20 1072.90  Click
Na 1s NaCl/Cu 1072.90  Click
Na 1s NaFeO2 1073.10  Click
Na 1s Na/O2/V/Cu 1073.30  Click
Na 1s NaFeO2 1073.40  Click

 

 

 

 


 

 

Statistical Analysis of Binding Energies in NIST Database of BEs



 

 

Advanced XPS Information Section

for XPS Research Studies on Sodium (Na) Containing Materials

 


 

 

XPS Spectra

 

from Common Sodium Compounds

                           


 

Sodium Oxide, Na2O
Lump, Bulk Exposed, Auto-oxidized to NaHCO3

Survey Spectrum from Exposed Bulk of Na2O (NaHCO3?) Na (1s) Chemical State Spectrum from Exposed Bulk of Na2O (NaHCO3?)


 


C (1s) Chemical State Spectrum from Exposed Bulk Na2O (NaHCO3?) O (1s) Chemical State Spectrum from Exposed Bulk of Na2O (NaHCO3?)


.
Valence Band Spectrum from Na2O 80% (NaHCO3 ?)

 


 

Cryolite, Na3AlF6
natural crystal
freshly exposed bulk

Survey Spectrum from Na3AlF6 Na (1s) Chemical State Spectrum from Na3AlF6



  .
Al (2p) Chemical State Spectrum from Na3AlF6 C (1s) Chemical State Spectrum from Na3AlF6


  .
F (1s) Chemical State Spectrum from Na3AlF6 Na (1s) Chemical State Spectrum from Na3AlF6

le 


 

Valence Band Spectra Comparison and Overlay
NaHCO3,  Na2CO3

NaHCO3 – exposed bulk
Bands Aligned
Na2CO3 – powder
Bands Aligned

   .

Valence Band Spectra
Overlay of NaHCO3 and Na2CO3

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

Copyright ©:  The XPS Library


 

Chemical State Na (KLL) Auger Spectra by XPS

Overlay of NaF, NaCl, NaBr, NaI and Na Metal – by XPS Overlay of NaF, NaCl, NaBr and NaI – by XPS

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 

Copyright ©:  The XPS Library  



 

XPS Facts, Guidance & Information

 Periodic Table 

    Element Sodium (Na)
 
    Primary XPS peak used for Peak-fitting : Na (1s)  
    Spin-Orbit (S-O) splitting for Primary Peak: NO Spin-Orbit splitting for “s” orbitals
 
    Binding Energy (BE) of Primary XPS  Signal: 1071.6 eV
 
    Scofield Cross-Section (σ) Value: Na (1s):  8.52
 
    Conductivity: Metal form is very conductive
Sodium Resistivity = xx
 
    Range of Na (1s) Chemical State BEs: 1071-1073 eV range   (Nao to NaF)  
Signals from other elements that overlap
Na (1s) Primary Peak:
  xx
Bulk Plasmons:   ~ 6 eV above peak BE max
Shake-up Peaks: xx
Multiplet Splitting Peaks:   not possible

 

 

General Information about
Sodium Compounds:
  xx  
Cautions – Chemical Poison Warning

Flammable

Copyright ©:  The XPS Library

 



 

Information Useful for Peak-fitting Na (1s)

  • FWHM (eV) of Pure Sodium metal:  0.82 eV using 50 eV Pass Energy after ion etching and very fast data collection cycles
  • FWHM (eV) of Sodium Halides:  1.6 – 2.2 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  1071.6 eV for Na (1s) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Na (1s):  xx

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Metal Oxide:  Pure element FWHM << Metal Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a metal or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas can be constrained but it is difficult due to the 0.4 eV separation.
  • Constraints on Peak-fitting: It is difficult to use the 1s3/2 : 1s1/2 area ratio to constrain peaks in chemical state spectra because the peaks are only 0.4 eV apart

Notes:

  • Other Oxidation States such as Na2O or NaOH can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Peak-fits of C (SO) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Quantitation Details and Information

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

 Periodic Table 


 

Contaminants Specific to Sodium Metal

  • Sodium metal develops a native oxide that is usually 6-7 nm thick.  .
  • With heat the native oxide becomes thicker and the BE of the oxide shifts to higher BE
  • Sodium does not readily form a carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (SO) peak max BE.
  • Low levels of carbonate is common on many metals that readily oxidize in the air.
  • High levels of carbonate appear on reactive metal oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (SO) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive metals.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

  • Chemical state differentiation can be difficult
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Na (1s)

  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Na (1s) at 1072 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  1060 – 1080 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  1050 – 1150 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

  • Carbides can appear after ion etching various reactive metals.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 



Gas Phase XPS or UPS Spectra



Chemical State Spectra for Na (1s) Published in the Literature



End of File