Sro SrCO3 SrF2 SrSO4  SrTiO3 SrZrO3 SrB4O7 SrSi2 BiSrCaCuO  Basic 

XPS Spectra
Strontium (Sr) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Strontium metal  (Sro)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from Sro
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag (3d5/2) FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
Sr (3d) Spectrum from Sro Raw
Fresh exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Sr (3d) Spectrum from Sro Peak-Fit
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV


 
Sr (3d) Spectrum from Sro Extended 
Fresh exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Sr (3d) Spectrum from Sro Expanded
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables
Sr (3p) Spectrum from Sro Raw
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Sr (3p) Spectrum from Sro Peak-Fit
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
Auger Signals from Sro Raw
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Valence Band Signals from Sro Raw
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
na

 
Overlays
 Periodic Table  → Six (6) BE Tables
Sr (3d) SpectraOverlay of Sro and SrSO4
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Sr (3d) SpectraOverlay of Sro and SrF2
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Chemical Shift:  +0.8 eV Chemical Shift:  -0.4 eV


 Periodic Table  → Six (6) BE Tables
Valence Band Spectra – Overlay of SrSO4, and SrF2
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV
Sr (3d) Spectra – Overlay of Sro, SrSO4, and SrF2
Freshly exposed bulk, Flood gun is OFF, sample conductive, Ag FWHM = 0.75 eV


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Sc), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 120, 140, 160, 180 and 200 eV


End-of-page

 



Six (6) Chemical State Tables of Sr (3d5/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Sr (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Sr 38 BiSrCaCuOx 132.2 eV 285.0 eV The XPS Library
Sr 38 Sr-TiO3 (N*1) 132.7 eV 284.8 eV Avg BE – NIST
Sr 38 SrTiO3 132.7 eV 285.0 eV The XPS Library
Sr 38 Sr-(OH)2 (N*1) 133.0 eV 284.8 eV Avg BE – NIST
Sr 38 Sr-CO3 132.9 eV 285.0 eV The XPS Library
Sr 38 Sr-F2 (N*2) 133.7 eV 134.0 eV 284.8 eV Avg BE – NIST
Sr 38 Sr-BO3 133.8 eV 285.0 eV The XPS Library
Sr 38 Sr-F2 133.9 eV 285.0 eV The XPS Library
Sr 38 Sr-SO4 (N*2) 134.0 eV 134.3 eV 284.8 eV Avg BE – NIST
Sr 38 Sr(NO3)2 (N*1) 134.2 eV 284.8 eV Avg BE – NIST
Sr 38 Sr – element 134.3 eV 285.0 eV The XPS Library
Sr 38 Sr-SO4 134.9 eV 285.0 eV The XPS Library
Sr 38 Sr-I2 (N*1) 135 eV 284.8 eV Avg BE – NIST
Sr 38 Sr-O  (N*1) 135.3 eV 284.8 eV Avg BE – NIST

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (3d7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Sr (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Sr (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Sr (3d5/2)
SrO 132.9
SrCO3 133.4
SrTiO3 133.1

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Sr (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Sr (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Sr 3d5/2 SrRh2O4 133.0 ±0.3 132.7 133.3
Sr 3d5/2 SrCO3 133.3 ±0.2 133.1 133.5
Sr 3d5/2 SrMoO4 133.5 ±0.2 133.3 133.7
Sr 3d5/2 SrF2 133.8 ±0.3 133.5 134.0
Sr 3d5/2 SrSO4 134.4 ±0.3 134.1 134.6
Sr 3d5/2 Sr 134.5 ±0.3 134.2 134.7
Sr 3d5/2 Sr(NO3)2 134.8 ±0.3 134.5 135.0
Sr 3d5/2 SrO 135.4 ±0.3 135.1 135.6

 Periodic Table 



 

Histograms of NIST BEs for Sr (3d5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  134.3 eV for Sro based on 2 literature BEs Histogram indicates:  134.1  eV for SrO based on 2 literature BEs

Table #6


NIST Database of Sr (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Element Spectral Line Formula Energy (eV) Reference
Sr 3d5/2 Bi2Sr2Ca2Cu3Ox 131.10  Click
Sr 3d5/2 SrFeO3 131.40  Click
Sr 3d5/2 Bi1.99Sr2.00Ca2Cu3Ox 131.40  Click
Sr 3d5/2 Bi2.00Sr2.00Ca2Cu3Ox 131.40  Click
Sr 3d5/2 Bi2.01Sr2.00Ca2Cu3Ox 131.40  Click
Sr 3d5/2 Bi2.01Sr2.00Ca2Cu3Ox 131.40  Click
Sr 3d5/2 Bi2.01Sr2Ca2Cu3Ox 131.40  Click
Sr 3d5/2 Bi1.6Pb0.4Sr2Ca2Cu3Ox 131.40  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 131.60  Click
Sr 3d5/2 Bi1.7Pb0.4Sr2Ca2Cu3O10+x 131.60  Click
Sr 3d5/2 Bi1.55Pb0.6Sr2Ca2Cu3.5O10+x 131.60  Click
Sr 3d5/2 BiPbSr2CaCu2O8+x 131.60  Click
Sr 3d5/2 Bi2Sr2CaCu2O8 131.70  Click
Sr 3d5/2 Bi2Sr1.4CaCu2Ox 131.80  Click
Sr 3d5/2 Bi2Ca1+xSr2-xCu2O8+y 131.80  Click
Sr 3d5/2 Bi2Ca1+xSr2-xCu2O8+y 131.80  Click
Sr 3d5/2 Bi2Sr2Ca2Cu2O8+x 131.80  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 131.80  Click
Sr 3d5/2 Bi1.6Pb0.4Sr2CaCu2O8+x 131.80  Click
Sr 3d5/2 Bi2Sr2CaCu2Ox 131.90  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 131.90  Click
Sr 3d5/2 Bi2CaSr2Cu2Ox 132.00  Click
Sr 3d5/2 Bi2CaSr2Ni0.2Cu1.8Ox 132.00  Click
Sr 3d5/2 Sr 132.10  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 132.20  Click
Sr 3d5/2 Bi2Sr2CuO6 132.30  Click
Sr 3d5/2 Bi2Sr2Ca2Cu3Ox 132.30  Click
Sr 3d5/2 SrO 132.50  Click
Sr 3d5/2 Bi2Sr2YCu2Ox 132.50  Click
Sr 3d5/2 Bi2Sr2CaCu2Ox 132.50  Click
Sr 3d5/2 SrTiO3 132.70  Click
Sr 3d5/2 SrTiO3 132.70  Click
Sr 3d5/2 Sr/Si 132.70  Click
Sr 3d5/2 Bi2Sr2Ca2Cu2O8+x 132.70  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 132.70  Click
Sr 3d5/2 SrTiO3 132.70  Click
Sr 3d5/2 SrO 132.80  Click
Sr 3d5/2 SrO 132.80  Click
Sr 3d5/2 SrCO3 132.90  Click
Sr 3d5/2 SrCO3 132.90  Click
Sr 3d5/2 SrCO3 132.90  Click
Sr 3d5/2 SrS 132.90  Click
Sr 3d5/2 SrS 132.90  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 132.90  Click
Sr 3d5/2 SrTiO3 132.90  Click
Sr 3d5/2 Bi1.7Pb0.4Sr2Ca2Cu3O10+x 132.90  Click
Sr 3d5/2 Bi1.55Pb0.6Sr2Ca2Cu3.5O10+x 132.90  Click
Sr 3d5/2 BiPbSr2CaCu2O8+x 132.90  Click
Sr 3d5/2 SrCO3 132.90  Click
Sr 3d5/2 La0.8Sr0.2MnO3 132.90  Click
Sr 3d5/2 Sr2CuO2F2.6 132.90  Click
Sr 3d5/2 SrRh2O4 133.00  Click
Sr 3d5/2 Sr(OH)2.8H2O 133.00  Click
Sr 3d5/2 Sr(OH)2.8H2O 133.00  Click
Sr 3d5/2 Bi2Sr1.4CaCu2Ox 133.00  Click
Sr 3d5/2 Bi1.99Sr2.00Ca2Cu3Ox 133.00  Click
Sr 3d5/2 Bi2.00Sr2.00Ca2Cu3Ox 133.00  Click
Sr 3d5/2 Bi2.01Sr2.00Ca2Cu3Ox 133.00  Click
Sr 3d5/2 Bi2.01Sr2.00Ca2Cu3Ox 133.00  Click
Sr 3d5/2 Bi2.01Sr2Ca2Cu3Ox 133.00  Click
Sr 3d5/2 Bi2Sr2CaCu2Ox 133.10  Click
Sr 3d5/2 Bi2Ca1+xSr2-xCu2O8+y 133.15  Click
Sr 3d SrCO3 133.20  Click
Sr 3d5/2 Sr3[Mn(OH)6]2 133.20  Click
Sr 3d5/2 Bi2Sr2Ca0.2Y0.8Cu2Ox 133.30  Click
Sr 3d5/2 Bi2Sr2CaCu2Ox 133.30  Click
Sr 3d5/2 Bi2Sr2Ca0.5Y0.5Cu2Ox 133.30  Click
Sr 3d5/2 Bi1.6Pb0.4Sr2CaCu2O8+x 133.30  Click
Sr 3d5/2 Bi2Sr2CaCu2O8+x 133.40  Click
Sr 3d5/2 Sr2CuO3 133.40  Click
Sr 3d5/2 SrCO3 133.50  Click
Sr 3d5/2 SrMoO4 133.50  Click
Sr 3d5/2 SrF2 133.75  Click
Sr 3d5/2 SrF2 133.75  Click
Sr 3d5/2 La0.972Sr0.212NiO3-x 133.80  Click
Sr 3d5/2 La1.067Sr0.220NiO3-x 134.00  Click
Sr 3d5/2 La0.8Sr0.2CrO3 134.00  Click
Sr 3d5/2 La0.8Sr0.2FeO3 134.00  Click
Sr 3d5/2 SrF2 134.00  Click
Sr 3d5/2 SrF2 134.05  Click
Sr 3d5/2 SrF2 134.05  Click
Sr 3d5/2 SrSO4 134.05  Click
Sr 3d5/2 SrSO4 134.05  Click
Sr 3d5/2 SrF2 134.05  Click
Sr 3d5/2 SrSO4 134.06  Click
Sr 3d5/2 Sr(NO3)2 134.20  Click
Sr 3d5/2 Sr 134.20  Click
Sr 3d5/2 Sr(NO3)2 134.20  Click
Sr 3d5/2 Sr(NO3)2 134.20  Click
Sr 3d5/2 La0.8Sr0.2CoO3 134.20  Click
Sr 3d SrSO4 134.30  Click
Sr 3d5/2 La0.8Sr0.2YO3 134.30  Click
Sr 3d5/2 Sr 134.40  Click
Sr 3d5/2 Sr/Si 134.40  Click
Sr 3d Sr(NO3)2 134.70  Click
Sr 3d5/2 SrCl2 134.70  Click
Sr 3d5/2 SrCl2 134.70  Click
Sr 3d5/2 SrBr2 134.70  Click
Sr 3d5/2 SrBr2 134.70  Click
Sr 3d5/2 La0.996Sr0.159NiO3-x 134.70  Click
Sr 3d5/2 SrBr2 134.70  Click
Sr 3d5/2 SrCl2 134.70  Click
Sr 3d5/2 SrI2 135.00  Click
Sr 3d5/2 SrI2 135.00  Click
Sr 3d5/2 SrI2 135.00  Click
Sr 3d5/2 SrO 135.30  Click

 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 

 Periodic Table