Sno SnO SnO2 SnS SnSO4 SnF2 SnF4 SnAg, solder ball SnCu     Basic 

XPS Spectra
Tin (Sn) Compounds
The XPS Spectra section provides raw and processed survey spectra, chemical state spectra, BE values, FWHM values, and overlays of key spectra.
Atom% values from surveys are based on sample, as received, and Scofield cross-sections. Atom% values are corrected for IMFP and PE.
Peak-fits are guides for practical, real-world applications. Peak-fits are not fully optimized or designed to test any theory.


Tin Monoxide  (SnO)
Survey, Peak-fits, BEs, FWHMs, and Peak Labels

NOTE: Based on the Sn (3d) spectrum, the sample is a 1:1 mixture of SnO and SnO2.
The Sample conductive, C (1s) BE =286.2 eV, but the C (1s) window was not setup correctly.


 Periodic Table   → Six (6) BE Tables
Survey Spectrum from SnO
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV Ag (3d5/2) FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
Sn (3d) Spectrum from SnO Raw
Fresh exposed bulk, Sample conductive, C (1s) BE =286.2 eV
, Ag FWHM = 0.75 eV
Sn (3d) Spectrum from SnO Peak-Fit
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables
O (1s) Spectrum from SnO Raw
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV
O (1s) Spectrum from SnO Peak-Fit
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV

 Periodic Table  → Six (6) BE Tables
C (1s) Spectrum from SnO Raw
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV
C (1s) Spectrum from SnO Peak-fit – from Survey
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 1.3 eV

 Periodic Table  → Six (6) BE Tables
O (KLL) Auger Signals from SnO Raw
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV
Valence Band Signals from SnO Raw
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV
na

 
Overlays
 Periodic Table  → Six (6) BE Tables
Valence Band SpectraOverlay of Sno and SnO
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV
Sn (3d) SpectraOverlay of Sno and SnO
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV


 Periodic Table  → Six (6) BE Tables
Sn (3d) Spectra – Overlay of Sno and Native SnOx
Freshly exposed bulk, Sample conductive, C (1s) BE =286.2 eV, Ag FWHM = 0.75 eV


End-of-spectra

Price to purchase raw data sets:
Raw spectra – VAMAS ASCII format ($6)
Raw spectra – SDP binary format ($5)
SDP v9 – $145 (3 yr license)

 



 

Transmission Function Tests


 

December 2015 – Transmission Function of Thermo K-Alpha Plus

 Periodic Table 
Survey Spectra of Ion Etched Copper (Sc), PEs = 50, 100, 150 and 200 eV

 Periodic Table 
March 2016 – Transmission Function of Thermo K-Alpha Plus 
 
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 150 and 200 eV

 Periodic Table  
August 2019 – Transmission Function of Thermo K-Alpha Plus
 
Survey Spectra of HOPG (C), PEs = 20, 50, 100 and 200 eV

 Periodic Table  
January 2022 – Transmission Function of Thermo K-Alpha Plus
Survey Spectra of Ion Etched Copper (Sc), PEs = 100, 120, 140, 160, 180 and 200 eV


End-of-Transmission-Function-Tests

 



Six (6) Chemical State Tables of Sn (3d5/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3/2) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (2p3/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Sn (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Sn 50 Cd2SnO4 (N*3) 458.5 eV 486.1 eV 284.8 eV Avg BE – NIST
Sn 50 Sn (N*02) 484.4 eV 485.2 eV 284.8 eV Avg BE – NIST
Sn 50 Sn – element 484.9 eV 285.0 eV The XPS Library
Sn 50 Ag95Sn5 (N*1) 485.6 eV 284.8 eV Avg BE – NIST
Sn 50 Sn-S (N*3) 485.6 eV 486.4 eV 284.8 eV Avg BE – NIST
Sn 50 SnTe (N*1) 485.6 eV 284.8 eV Avg BE – NIST
Sn 50 SnSe (N*2) 485.7 eV 486.0 eV 284.8 eV Avg BE – NIST
Sn 50 Sn-O (N*5) 486.0 eV 487.0 eV 284.8 eV Avg BE – NIST
Sn 50 SnO2 (N*17) 486.2 eV 487.1 eV 284.8 eV Avg BE – NIST
Sn 50 Pb98Sn2 (N*1) 486.4 eV 284.8 eV Avg BE – NIST
Sn 50 Sn-Cl2 (N*2) 486.5 eV 486.7 eV 284.8 eV Avg BE – NIST
Sn 50 KSnF3 (N*1) 486.7 eV 284.8 eV Avg BE – NIST
Sn 50 Sn-Br2 (N*1) 486.9 eV 284.8 eV Avg BE – NIST
Sn 50 InSnO (ITO) 487.1 eV 285.0 eV The XPS Library
Sn 50 Sn-F2 (N*3) 487.1 eV 487.4 eV 284.8 eV Avg BE – NIST
Sn 50 Sn-O2 487.1 eV 285.0 eV The XPS Library
Sn 50 NaSnF3 (N*1) 487.4 eV 284.8 eV Avg BE – NIST
Sn 50 K2SnF6 (N*1) 487.6 eV 284.8 eV Avg BE – NIST
Sn 50 SnF4 (N*2) 487.9 eV 488.2 eV 284.8 eV Avg BE – NIST
Sn 50 Sn-(OH)2 285.0 eV The XPS Library
Sn 50 SnCO3 285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (2p3/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Sn (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Sn (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV), Sn (3d5/2)
Sn metal 485.2
SnO 486
SnO2 486.6

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Sn (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Sn (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Sn 3d5/2 Sn 484.9 ±0.4 484.5 485.2
Sn 3d5/2 SnS 485.7 ±0.3 485.4 485.9
Sn 3d5/2 Ph4Sn 486.2 ±1.1 485.1 487.2
Sn 3d5/2 SnO 486.5 ±0.5 486.0 486.9
Sn 3d5/2 SnO2 486.7 ±0.3 486.4 486.9
Sn 3d5/2 Na2SnO3 486.7 ±0.5 486.2 487.2
Sn 3d5/2 Me3SnF 486.8 ±0.3 486.5 487.0
Sn 3d5/2 Ph3Sn(Halide) 486.8 ±0.5 486.3 487.3
Sn 3d5/2 Halides 486.9 ±0.2 486.7 487.0
Sn 3d5/2 Br6Sn(Et4N)2 487.0 ±0.2 486.8 487.2
Sn 3d5/2 Me2SnF2 487.2 ±0.3 486.9 487.4

 

 Periodic Table 



 

Histograms of NIST BEs for Sn (3d5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Histogram indicates:  485.0 eV for Sno based on 23 literature BEs Histogram indicates:  486.5 eV for SnO based on 6 literature BEs

Histogram indicates:  486.7 eV for SnO2 based on 19 literature BEs

 

Table #6


NIST Database of Sn (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
Sn 3d5/2 Sn 484.30  Click
Sn 3d5/2 Sn 484.40  Click
Sn 3d5/2 Sn 484.60  Click
Sn 3d5/2 Sn 484.60  Click
Sn 3d5/2 Co20Sn80 484.70  Click
Sn 3d5/2 Sn 484.70  Click
Sn 3d5/2 Sn 484.70  Click
Sn 3d5/2 Zr98Sn1.5Fe0.22 484.70  Click
Sn 3d5/2 SnOx/Sn 484.70  Click
Sn 3d5/2 Sn 484.80  Click
Sn 3d5/2 Sn 484.80  Click
Sn 3d5/2 Sn 484.80  Click
Sn 3d5/2 Sn 484.80  Click
Sn 3d5/2 Zr98Sn1.5Fe0.22 484.80  Click
Sn 3d5/2 Sn 484.85  Click
Sn 3d5/2 Sn 484.87  Click
Sn 3d5/2 Sn 484.87  Click
Sn 3d5/2 Sn 484.90  Click
Sn 3d5/2 Sn 484.90  Click
Sn 3d5/2 Sn 484.90  Click
Sn 3d5/2 Sn 484.92  Click
Sn 3d5/2 Sn 484.94  Click
Sn 3d5/2 Sn 485.00  Click
Sn 3d5/2 Sn 485.00  Click
Sn 3d5/2 Sn 485.00  Click
Sn 3d5/2 Sn 485.00  Click
Sn 3d5/2 [Ge(C6H5)3(Sn(C6H5)3)] 485.10  Click
Sn 3d5/2 [Sn(C6H5)4] 485.10  Click
Sn 3d5/2 Sn 485.10  Click
Sn 3d5/2 Sn 485.20  Click
Sn 3d5/2 Sb95Sn5 485.20  Click
Sn 3d5/2 Au50Sn50 485.22  Click
Sn 3d5/2 O2/Au70.5Sn29.5 485.26  Click
Sn 3d5/2 Au70.5Sn29.5 485.27  Click
Sn 3d5/2 [(C6H5)3SnSSn(C6H5)3] 485.30  Click
Sn 3d5/2 Cd99.6Sn0.4 485.30  Click
Sn 3d5/2 [N(CH3)4][SnCl3] 485.30  Click
Sn 3d5/2 [Mo(CO)3(C5H5)(Sn(CH3)3)] 485.30  Click
Sn 3d5/2 Au90Sn10 485.30  Click
Sn 3d5/2 Au86Sn14 485.35  Click
Sn 3d5/2 [Fe(CO)2(C2H5)Sn(C6H5)3] 485.40  Click
Sn 3d5/2 Cd2SnO4 485.52  Click
Sn 3d5/2 Ag95Sn5 485.60  Click
Sn 3d5/2 [SnOH(C6H5)3] 485.60  Click
Sn 3d5/2 [Sn(C4H9)2]O 485.60  Click
Sn 3d5/2 [Sn(C6H5)3]2O 485.60  Click
Sn 3d5/2 SnO 485.60  Click
Sn 3d5/2 SnS 485.60  Click
Sn 3d5/2 SnTe 485.60  Click
Sn 3d5/2 [Sn(C6H5)4] 485.70  Click
Sn 3d5/2 SnS 485.70  Click
Sn 3d5/2 SnSe 485.70  Click
Sn 3d5/2 [W(CO)3(C5H5)(Sn(CH3)3)] 485.80  Click
Sn 3d5/2 [W(CO)3(Sn(C6H5)3)(C5H5)] 485.80  Click
Sn 3d5/2 [Sn2(C6H5)6] 485.80  Click
Sn 3d5/2 KSnF3 485.80  Click
Sn 3d5/2 [Sn(C6H5)4] 485.85  Click
Sn 3d5/2 SnNbS3 485.90  Click
Sn 3d5/2 [W(CO)3(SnCl(CH3)2)(C5H5)] 486.00  Click
Sn 3d5/2 [Mo(CO)3(Sn(C6H5)3)(C5H5)] 486.00  Click
Sn 3d5/2 Cd2SnO4 486.00  Click
Sn 3d5/2 SnO 486.00  Click
Sn 3d5/2 SnSe 486.00  Click
Sn 3d5/2 SnO2 486.00  Click
Sn 3d5/2 SnSeOx 486.00  Click
Sn 3d5/2 SnSeOx 486.00  Click
Sn 3d5/2 SnSeOx 486.00  Click
Sn 3d5/2 SnSeOx 486.00  Click
Sn 3d5/2 SnSeOx 486.00  Click
Sn 3d5/2 [W(CO)3(Sn(C6H5)3)(C5H5)] 486.10  Click
Sn 3d5/2 [N(CH3)4][SnCl3] 486.10  Click
Sn 3d5/2 SnO2 486.10  Click
Sn 3d5/2 SnO2 486.10  Click
Sn 3d5/2 CdSnO3 486.10  Click
Sn 3d5/2 Sn 486.10  Click
Sn 3d5/2 Cd2SnO4 486.10  Click
Sn 3d5/2 SnO 486.10  Click
Sn 3d5/2 [SnF(C6H5)3] 486.20  Click
Sn 3d5/2 SnO2 486.20  Click
Sn 3d5/2 SnO2 486.20  Click
Sn 3d5/2 Na2SnO3 486.20  Click
Sn 3d5/2 SnMo6S8 486.20  Click
Sn 3d5/2 SnO2 486.20  Click
Sn 3d5/2 SnO2 486.24  Click
Sn 3d5/2 O2/Au70.5Sn29.5 486.28  Click
Sn 3d5/2 [Mo(CO)3(ClSn(CH3)2)(C5H5)] 486.30  Click
Sn 3d5/2 [W(CO)3(CH3)(C5H5)SnCl2] 486.30  Click
Sn 3d5/2 [SnI2(C5H4N)2(CH3)2] 486.30  Click
Sn 3d5/2 [SnCl(C6H5)3] 486.30  Click
Sn 3d5/2 [SnI(C6H5)3] 486.30  Click
Sn 3d5/2 [Sn(C6H5)4] 486.30  Click
Sn 3d5/2 Pt3(SnF3)2((C6H5)2PCH2P(C6H5)2)3[PF6] 486.30  Click
Sn 3d5/2 SnO/C 486.30  Click
Sn 3d5/2 SnO1.15 486.30  Click
Sn 3d5/2 SnS 486.40  Click
Sn 3d5/2 Pb98Sn2 486.40  Click
Sn 3d5/2 SnOx/Sn 486.40  Click
Sn 3d5/2 SnO1.39 486.41  Click
Sn 3d5/2 SnO1.55 486.47  Click
Sn 3d5/2 SnCl2 486.50  Click
Sn 3d5/2 [SnCl(C6H5)3] 486.50  Click
Sn 3d5/2 SnO2 486.50  Click
Sn 3d5/2 SnO2 486.50  Click
Sn 3d5/2 SnO2 486.50  Click
Sn 3d5/2 SnO2 486.50  Click
Sn 3d5/2 Pt3(CO)(SnF3)((C6H5)2PCH2P(C6H5)2)3[PF6] 486.50  Click
Sn 3d5/2 (In2O3)0.95(SnO2)0.05 486.50  Click
Sn 3d5/2 (In2O3)0.90(SnO2)0.10 486.50  Click
Sn 3d5/2 [Sn(C6H5)3(C6H5C(O)CHC(O)C6H5)] 486.55  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 SnO 486.60  Click
Sn 3d5/2 SnO2 486.60  Click
Sn 3d5/2 [Sn(C6H5)2(C6H5C(O)CHC(O)C6H5)2] 486.64  Click
Sn 3d5/2 [N(CH3)4]2[SnCl6] 486.70  Click
Sn 3d5/2 [Sn(CH3)3]F 486.70  Click
Sn 3d5/2 SnCl2 486.70  Click
Sn 3d5/2 KSnF3 486.70  Click
Sn 3d5/2 [N(CH3)4]2[PtCl2(SnCl3)2] 486.70  Click
Sn 3d5/2 (NH4)2[SnCl6] 486.70  Click
Sn 3d5/2 SnO2 486.70  Click
Sn 3d5/2 SnO2 486.70  Click
Sn 3d5/2 SnO2 486.70  Click
Sn 3d5/2 SnO2 486.70  Click
Sn 3d5/2 SnO2 486.70  Click
Sn 3d5/2 SnO2 486.70  Click
Sn 3d5/2 Na2SnO3 486.70  Click
Sn 3d5/2 Sn((C5H4N)N=N(C5H4N))Br4 486.70  Click
Sn 3d5/2 Sn(CH3)2((C5H4N)N=N(C5H4N))Br2 486.70  Click
Sn 3d5/2 (IrO2)0.005(SnO2)0.995 486.70  Click
Sn 3d5/2 (IrO2)0.15(SnO2)0.85 486.70  Click
Sn 3d5/2 (IrO2)0.25(SnO2)0.75 486.70  Click
Sn 3d5/2 (IrO2)0.35(SnO2)0.65 486.70  Click
Sn 3d5/2 Sn 486.72  Click
Sn 3d5/2 SnO1.65 486.79  Click
Sn 3d5/2 BaSnCl4 486.80  Click
Sn 3d5/2 Ba(SnCl3)2 486.80  Click
Sn 3d5/2 [N(CH3)4]2[Pt(SnCl3)5] 486.80  Click
Sn 3d5/2 SnO2 486.80  Click
Sn 3d5/2 SnO2 486.80  Click
Sn 3d5/2 Na2SnO3 486.80  Click
Sn 3d5/2 SnS2 486.80  Click
Sn 3d5/2 (IrO2)0.63(SnO2)0.37 486.80  Click
Sn 3d5/2 [Sn(CH3)2(CH3C(O)CHC(O)CH3)2] 486.81  Click
Sn 3d5/2 [Sn(CH3)2(C6H5C(O)CHC(O)C6H5)2] 486.87  Click
Sn 3d5/2 SnBr2 486.90  Click
Sn 3d5/2 [SnCl4(SO(CH3)2)2] 486.90  Click
Sn 3d5/2 [SnCl(C6H5CH2)3] 486.90  Click
Sn 3d5/2 [N(C2H5)4]3[Pt(SnCl3)5] 486.90  Click
Sn 3d5/2 SnO 486.90  Click
Sn 3d5/2 ((CH3)2NH2)6[(SCN)9W3S4SnCl3].0.5H2O 486.90  Click
Sn 3d5/2 Sn[Cr4(OH)7(CH3COO)(OH2)7]0.67H0.4(PO4)2.3H2O 486.90  Click
Sn 3d5/2 Sn(HPO4)2.H2O 486.90  Click
Sn 3d5/2 SnO 486.90  Click
Sn 3d5/2 SnO2 486.95  Click
Sn 3d5/2 [Sn(CH3)2(C9H6NO)2] 486.96  Click
Sn 3d5/2 [N(C2H5)4]2[SnBr6] 487.00  Click
Sn 3d5/2 [Sn(CH3)2SO4] 487.00  Click
Sn 3d5/2 SnF2 487.00  Click
Sn 3d5/2 [SnCl(C6H5)3] 487.00  Click
Sn 3d5/2 [Sn(C6H5)3(C9H6NO)] 487.00  Click
Sn 3d5/2 [SnCl2(CH3)2(SO(CH3)2)2] 487.00  Click
Sn 3d5/2 [Ag(P(C6H5)3)3]SnCl3 487.00  Click
Sn 3d5/2 [W(CO)3(C5H5)]SnCl3 487.00  Click
Sn 3d5/2 [W(CO)3(C5H5)]SnCl3 487.00  Click
Sn 3d5/2 SnO 487.00  Click
Sn 3d5/2 SnO 487.00  Click
Sn 3d5/2 Sn(C6H5)2((C6H5)2PCH2CH2P(C6H5)2)Cl2 487.00  Click
Sn 3d5/2 (Pb(PO3)2)22.5(SnF2)36.6(PbF2)18.3 487.00  Click
Sn 3d5/2 Sn[Cr3(OH)6(CH3COO)(OH2)6]0.8H0.4(PO4)2.H2O 487.00  Click
Sn 3d5/2 [Mo(SnCl3)(CO)3(C5H5)] 487.10  Click
Sn 3d5/2 SnF2 487.10  Click
Sn 3d5/2 [SnCl4(SO(CH3)2)2] 487.10  Click
Sn 3d5/2 [Sn(C6H5)4] 487.10  Click
Sn 3d5/2 [SnF2(CH3)2] 487.10  Click
Sn 3d5/2 SnO2 487.10  Click
Sn 3d5/2 SnO2 487.10  Click
Sn 3d5/2 SnO2 487.10  Click
Sn 3d5/2 SnO2 487.10  Click
Sn 3d5/2 SnO2 487.10  Click
Sn 3d5/2 SnO2 487.10  Click
Sn 3d5/2 (Pb(PO3)2)30(SnF2)26.6(PbF2)13.3 487.10  Click
Sn 3d5/2 (Pb(PO3)2)25(SnF2)33.2(PbF2)16.6 487.10  Click
Sn 3d5/2 (Pb(PO3)2)27.5(SnF2)30(PbF2)15 487.10  Click
Sn 3d5/2 SnO2 487.13  Click
Sn 3d5/2 SnO2 487.13  Click
Sn 3d5/2 SnO2 487.13  Click
Sn 3d5/2 [SnCl(C6H5)(C6H5C(O)CHC(O)C6H5)2] 487.18  Click
Sn 3d5/2 [Sn(Cl2C9H5NO)2] 487.18  Click
Sn 3d5/2 [Co(CO)3SnCl3(As(C6H5)3)] 487.20  Click
Sn 3d5/2 [SnCl3(C2H5)(C5H5N)2] 487.20  Click
Sn 3d5/2 [SnCl3(C6H5)(C5H5N)2] 487.20  Click
Sn 3d5/2 Na2SnO3 487.20  Click
Sn 3d5/2 Zr98Sn1.5Fe0.22 487.20  Click
Sn 3d5/2 SnCl2/Al2O3 487.20  Click
Sn 3d5/2 [Mo(SnCl3)(CO)3(C5H5)] 487.30  Click
Sn 3d5/2 [SnCl4(C5H5N)2] 487.30  Click
Sn 3d5/2 [SnF(C6H5)3] 487.30  Click
Sn 3d5/2 SnO2 487.30  Click
Sn 3d5/2 SnO2 487.30  Click
Sn 3d5/2 [Sn(C6H5)2Cl2] 487.30  Click
Sn 3d5/2 [SnCl6(P(C6H5)4)2] 487.30  Click
Sn 3d5/2 [SnBr4(C4H4N2)] 487.40  Click
Sn 3d5/2 SnF2 487.40  Click
Sn 3d5/2 NaSnF3 487.40  Click
Sn 3d5/2 [Sn(C2H5)2(CH3C(O)C9H5NO)2] 487.40  Click
Sn 3d5/2 [SnCl2(C6H5)2(C4H4N2)] 487.50  Click
Sn 3d5/2 [SnBr(C6H5)3] 487.50  Click
Sn 3d5/2 [SnI(C6H5)3] 487.50  Click
Sn 3d5/2 [SnCl3(CH3)(C4H4N2)] 487.50  Click
Sn 3d5/2 [SnBr6(P(C6H5)4)2] 487.50  Click
Sn 3d5/2 Sn((C6H5)2PCH2CH2P(C6H5)2)Cl4 487.50  Click
Sn 3d5/2 Sn(C6H5)2(C4H4N2)Cl2 487.50  Click
Sn 3d5/2 [SnCl3(C4H9)(C4H4N2)] 487.60  Click
Sn 3d5/2 [SnCl3(C8H17)(C4H4N2)] 487.60  Click
Sn 3d5/2 [SnI4(C4H4N2)] 487.60  Click
Sn 3d5/2 K2SnF6 487.60  Click
Sn 3d5/2 [SnCl2(C6H4CH3)2] 487.60  Click
Sn 3d5/2 [SnCl(C6H5)3] 487.60  Click
Sn 3d5/2 Cd2SnO2 487.60  Click
Sn 3d5/2 [SnCl4(C4H4N2)] 487.80  Click
Sn 3d5/2 Sn(C4H4N2)Cl4 487.80  Click
Sn 3d5/2 [SnCl3(C6H5)(C4H4N2)] 487.90  Click
Sn 3d5/2 SnF4 487.90  Click
Sn 3d5/2 SnO2 488.00  Click
Sn 3d5/2 [SnCl4(C4H4N2)2] 488.10  Click
Sn 3d5/2 [Sn(C9H6NO)2] 488.10  Click
Sn 3d5/2 [Sn(C6H5)Cl3] 488.10  Click
Sn 3d5/2 SnF4 488.20  Click

 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table