Zro ZrO2 ZrN ZrC ZrSiO3 Zr(SO4)2 BaZrO3 SrZrO3 ZrSi2 ZrF4  

Basic XPS Information Section

The Basic XPS Information Section provides fundamental XPS spectra, BE values, FWHM values, BE tables, overlays of key spectra, histograms and a table of XPS parameters.
The Advanced XPS Information Section is a collection of additional spectra, overlays of spectra, peak-fit advice, data collection guidance, material info,
common contaminants, degradation during analysis, auto-oxidation, gas capture study, valence band spectra, Auger spectra, and more.
Published literature references, and website links are summarized at the end of the advanced section.
 Periodic Table – HomePage                      XPS Database of Polymers                       → Six (6) BE Tables



Zirconium (Zr)

 

Baddeleyite – ZrO2 Zirconium – Zro Zircon – ZrSiO4

 

  Page Index
  • Expert Knowledge & Explanations


Zirconium (Zro) Metal

Peak-fits, BEs, FWHMs, and Peak Labels


Zirconium (Zro) Metal
Zr (3d) Spectrum – raw spectrum

ion etched clean
Zirconium (Zro) Metal
Peak-fit of Zr (3d) Spectrum
w/o asymm


 Periodic Table – HomePage  
Zirconium (Zro) Metal
Zr (3d) Spectrum –
extended range 
Zirconium (Zro) Metal
Peak-fit of Zr (3d) Spectrum (w asymm)
 

 .

Zirconium (Zro) Metal
Zr (4p – 4s) Spectrum
Zirconium (Zro) Metal
Zr (3p) Spectrum

 

 

Survey Spectrum of Zirconium (Zro) Metal
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table 

XPS Signals for Zirconium, (Zro) Metal

Spin-Orbit Term,  BE (eV) Value, and Scofield σ for Aluminum Kα X-rays (1486 eV, 8.33 Ang)

Overlaps Spin-Orbit Term BE (eV) Value Scofield σ from 1486 eV X-rays IMFP (TPP-2M) in Å
Zr (3s) 430 2.10 23.1
Ca (2p) overlaps Zr (3p1/2) 343 2.64 24.8
Zr (3p3/2) 329 5.14 24.8
Br (3d) overlaps Zr (3d3/2) 181.2 2.87 27.2
Zr (3d5/2) 178.7 4.17 27.2
Zr (4s) 51 0.367 29.3
O (2s) overlaps Zr (4p) 27 1.05 29.6

σ:  abbreviation for the term Scofield Photoionization Cross-Section which is used with IMFP and TF to generate RSFs and atom% quantitation

Plasmon Peaks

~17 eV

Auger Peaks

 

Energy Loss    Intrinsic Plasmon Peak:  ~xx eV above peak max
Expected Bandgap for ZrO2: xx eV
Work Function for ZrO2:  xx eV

*Scofield Cross-Section (σ) for C (1s) = 1.0

 Periodic Table 


 

 

Valence Band Spectrum from Zirconium, Zro Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

 


 

Plasmon Peaks from Zro Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Zr (3d) – Extended Range Spectrum Zr (3d) – Extended Range Spectrum – Vertically Zoomed
 Periodic Table 

 

Zr (LMM) Auger Peaks from Zro Metal
 Fresh exposed bulk produced by extensive Ar+ ion etching

Zro Metal – main peak Zro Metal – full range
 

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Artefacts Caused by Argon Ion Etching

Zirconium Carbide(s)

can form when ion etched Reactive Metal Surfaces capture
Residual UHV Gases (CO, H2O, CH4 etc)

Argon Trapped in Zro

can form when Argon Ions are used
to removed surface contamination


 

Side-by-Side Comparison of
Zr Native-Oxide & Zirconium Oxide, ZrO2
Peak-fits, BEs, FWHMs, and Peak Labels

Zr Native-Oxide ZrO2
Zr (3d) from Zr Native-Oxide
Flood Gun OFF
As-Measured, C (1s) at 286.7 eV 
Zr (3d) from ZrO2 – pressed powder
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 


 Periodic Table 

   
Zr Native-Oxide ZrO2
C (1s) from Zr Native-Oxide
(Flood Gun OFF)
As-Measured, C (1s) at 286.7 eV

C (1s) from ZrO2 – pressed powder
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 Periodic Table 

   
Zr Native-Oxide ZrO2
O (1s) from Zr Native-Oxide
(Flood Gun OFF)
As-Measured, C (1s) at 286.7 eV

O (1s) from ZrO2 – pressed powder
Flood Gun ON
Charge Referenced to C (1s) at 285.0 eV

 Periodic Table

 


 

Survey Spectrum of Zr Native-Oxide
with Peaks Integrated, Assigned and Labelled

 Periodic Table 


 

 

Survey Spectrum of Zirconium Oxide, ZrO2
with Peaks Integrated, Assigned and Labelled

 


 Periodic Table  


Overlays of Zr (3d) Spectra for:
Zr Native-Oxide and ZrO2

Caution: BEs from Grounded Native Oxides can be Misleading if Flood Gun is ON

 

 Overlay of Zro metal and Zr Native-Oxide – Zr (3d)
Native Oxide C (1s) = 286.7 eV (Flood gun OFF)
Chemical Shift: 5.2 eV
 Overlay of Zro metal and ZrO2 – Zr (3d)
Pure Oxide C (1s) = 285.0 eV
Chemical Shift: 3.5 eV
 
 Periodic Table  Copyright ©:  The XPS Library 

 

Overlay of Zr (3d)
Zro Metal, Zr Native-Oxide, & ZrO2:

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Valence Band Spectra
Zro, ZrO2 

Zro
Ion etched clean
ZrO2 – pressed powder
Flood gun is ON,  Charge referenced so C (1s) = 285.0 eV


Overlay of Valence Band Spectra:
for Zro metal and ZrO2

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 



 

Zirconium Minerals, Gemstones, and Chemical Compounds

 

Davinciite – Na12K3Ca6Fe3Zr3(Si26O73OH)Cl2 Kerimasite – Ca3Zr2(SiO4)(FeO4)2 Painite – CaZrAl9(BO3)O15 Kapustinite – Na6ZrSi6O16(OH)2

 Periodic Table 



 

Six (6) Chemical State Tables of Zr (3d5/2) BEs

 

  • The XPS Library Spectra-Base
  • PHI Handbook
  • Thermo-Scientific Website
  • XPSfitting Website
  • Techdb Website
  • NIST Website

 Periodic Table 



 

Notes of Caution when using Published BEs and BE Tables from Insulators and Conductors:

  • Accuracy of Published BEs
    • The accuracy depends on the calibration BEs used to calibrate the energy scale of the instrument.  Cu (2p3) BE can vary from 932.2 to 932.8 eV for old publications 
    • Different authors use different BEs for the C (1s) BE of the hydrocarbons found in adventitious carbon that appears on all materials and samples.  From 284.2 to 285.3 eV
    • The accuracy depends on when the authors last checked or adjusted their energy scale to produce the expected calibration BEs
  • Worldwide Differences in Energy Scale Calibrations
    • For various reasons authors still use older energy scale calibrations 
    • Some authors still adjust their energy scale so Cu (3d5/2) appears at 932.2 eV or 932.8 eV because this is what the maker taught them
    • This range causes BEs in the higher BE end to be larger than expected 
    • This variation increases significantly above 600 eV BE
  • Charge Compensation
    • Samples that behave as true insulators normally require the use of a charge neutralizer (electron flood gun with or without Ar+ ions) so that the measured chemical state spectra can be produced without peak-shape distortions or sloping tails on the low BE side of the peak envelop. 
    • Floating all samples (conductive, semi-conductive, and non-conductive) and always using the electron flood gun is considered to produce more reliable BEs and is recommended.
  • Charge Referencing Methods for Insulators
    • Charge referencing is a common method, but it can produce results that are less reliable.
    • When an electron flood gun is used, the BE scale will usually shift to lower BE values by 0.01 to 5.0 eV depending on your voltage setting. Normally, to correct for this flood gun induced shift, the BE of the hydrocarbon C (1s) peak maximum from adventitious carbon is used to correct for the charge induced shift.
    • The hydrocarbon peak is normally the largest peak at the lowest BE. 
    • Depending on your preference or training, the C (1s) BE assigned to this hydrocarbon peak varies from 284.8 to 285.0 eV.  Other BEs can be as low as 284.2 eV or as high as 285.3 eV
    • Native oxides that still show the pure metal can suffer differential charging that causes the C (1s) and the O (1s) and the Metal Oxide BE to be larger
    • When using the electron flood gun, the instrument operator should adjust the voltage and the XY position of the electron flood gun to produce peaks from a strong XPS signal (eg O (1s) or C (1s) having the most narrow FWHM and the lowest experimentally measured BE. 

 Periodic Table 


Table #1

Zr (3d5/2) Chemical State BEs from:  “The XPS Library Spectra-Base”

C (1s) BE = 285.0 eV for TXL BEs
and C (1s) BE = 284.8 eV for NIST BEs

Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest BE Hydrocarbon C (1s) BE  Source
Element Atomic # Compound As-Measured by TXL or NIST Average BE Largest NIST BE Hydrocarbon C (1s) BE Source
Zr 40 Zr – element 178.9 eV 285.0 eV The XPS Library
Zr 40 Zr-C 179.2 eV 285.0 eV The XPS Library
Zr 40 Zr-N 179.2 eV 285.0 eV The XPS Library
Zr 40 Ni91Zr9 (N*2) 179.5 eV 182.0 eV 285.0 eV The XPS Library
Zr 40 Zr-C (N*1) 179.6 eV 284.8 eV Avg BE – NIST
Zr 40 CoTaZr 179.7 eV 285.0 eV The XPS Library
Zr 40 Zr-N (N*2) 179.9 eV 180.9 eV 284.8 eV Avg BE – NIST
Zr 40 ZrO2 (N*7) 182.2 eV 183.3 eV 284.8 eV Avg BE – NIST
Zr 40 Zr-O2 182.6 eV 183.3 eV 285.0 eV The XPS Library
Zr 40 Zr(SO4)2 (N*1) 184 eV 185.3 eV 284.8 eV Avg BE – NIST
Zr 40 Zr-F4 (N*2) 185.1 eV 284.8 eV Avg BE – NIST
Zr 40 Zr-(OH)4 285.0 eV The XPS Library
Zr 40 Zr2CO3 285.0 eV The XPS Library
Zr 40 Zr-Cl4 285.0 eV The XPS Library

Charge Referencing Notes

  • (N*number) identifies the number of NIST BEs that were averaged to produce the BE in the middle column.
  • The XPS Library uses Binding Energy Scale Calibration with Cu (3d5/2) BE = 932.62 eV and Au (4f7/2) BE = 83.98 eV.  BE (eV) Uncertainty Range:  +/- 0.2 eV
  • Charge Referencing of insulators is defined such that the Adventitious Hydrocarbon C (1s) BE (eV) = 285.0 eV.  NIST uses C (1s) BE = 284.8 eV 
  • Note:   Ion etching removes adventitious carbon, implants Ar (+), changes conductivity of surface, and degrades chemistry of various chemical states.
  • Note:  Ion Etching changes BE of C (1s) hydrocarbon peak.
  • TXL – abbreviation for: “The XPS Library” (https://xpslibrary.com).  NIST:  National Institute for Science and Technology (in USA)

 Periodic Table 


Table #2

Zr (3d5/2) Chemical State BEs from:  “PHI Handbook”

C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Ulvac-PHI


Table #3

Zr (3d5/2) Chemical State BEs from:  “Thermo-Scientific” Website

C (1s) BE = 284.8 eV

Chemical state Binding energy (eV),
Zr (3d5/2)
Zr metal 178.9
Zr sub-oxides 179-180.5
ZrO 182.3
Zr (IV) silicate2 182.7

 Periodic Table 

Copyright ©:  Thermo Scientific 


Table #4

Zr (3d5/2) Chemical State BEs from:  “XPSfitting” Website

Chemical State BE Table derived by Averaging BEs in the NIST XPS database of BEs
C (1s) BE = 284.8 eV

 Periodic Table 

Copyright ©:  Mark Beisinger


Table #5

Zr (3d5/2) Chemical State BEs from:  “Techdb.podzone.net” Website

 

XPS Spectra – Chemical Shift | Binding Energy
C (1s) BE = 284.6 eV

XPS(X線光電子分光法)スペクトル 化学状態 化学シフト ケミカルシフト

Element Level Compound B.E.(eV) min max
Zr 3d5/2 Zr 178.8 ±0.1 178.7 178.9
Zr 3d5/2 ZrO2 182.3 ±0.3 182.0 182.5
Zr 3d5/2 K3ZrF7 183.8 ±0.3 183.5 184.0
Zr 3d5/2 K2ZrF6 184.3 ±0.3 184.0 184.5
Zr 3d5/2 KZrF5・H2O 184.8 ±0.3 184.5 185.0
Zr 3d5/2 ZrF5 185.3 ±0.3 185.0 185.5

 

 Periodic Table 



 


Histograms of NIST BEs for Zr (3d
5/2) BEs

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

 

Histogram indicates:  178.9 eV for Zro based on 16 literature BEs Histogram indicates:  182.6 eV for ZrO2 based on 11 literature BEs

Table #6


NIST Database of Zr (3d5/2) Binding
Energies

NIST Standard Reference Database 20, Version 4.1

Data compiled and evaluated
by
Alexander V. Naumkin, Anna Kraut-Vass, Stephen W. Gaarenstroom, and Cedric J. Powell
©2012 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved.

Important Note:  NIST Database defines Adventitious Hydrocarbon C (1s) BE = 284.8 eV for all insulators.

Element Spectral Line Formula Energy (eV) Reference
Zr 3d5/2 Zr 178.29  Click
Zr 3d5/2 Zr 178.29  Click
Zr 3d5/2 Zr 178.30  Click
Zr 3d5/2 Zr 178.30  Click
Zr 3d5/2 Zr 178.52  Click
Zr 3d5/2 Zr 178.52  Click
Zr 3d5/2 Fe91Zr9 178.62  Click
Zr 3d5/2 Fe90Zr10 178.67  Click
Zr 3d5/2 Zr 178.70  Click
Zr 3d5/2 Zr 178.70  Click
Zr 3d5/2 Zr 178.75  Click
Zr 3d5/2 Zr 178.75  Click
Zr 3d5/2 Zr 178.79  Click
Zr 3d5/2 Zr 178.79  Click
Zr 3d5/2 ZrH2 178.80  Click
Zr 3d5/2 Zr 178.80  Click
Zr 3d5/2 Zr 178.80  Click
Zr 3d5/2 Ni25Zr75 178.80  Click
Zr 3d5/2 Co50Zr50 178.80  Click
Zr 3d5/2 O2/Zr 178.80  Click
Zr 3d5/2 Zr/Si 178.80  Click
Zr 3d5/2 Zr/Ta 178.80  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Zr 178.90  Click
Zr 3d5/2 Co50Zr50Ox 178.90  Click
Zr 3d5/2 Zr/SiO2/Si 178.90  Click
Zr 3d5/2 Zr63.8Ni36.8 178.98  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 Zr 179.00  Click
Zr 3d5/2 AlNiZr 179.00  Click
Zr 3d5/2 O2/AlNiZr 179.00  Click
Zr 3d5/2 Fe24Zr76 179.00  Click
Zr 3d5/2 Fe24Zr76 179.00  Click
Zr 3d5/2 Zr/SiO2/Si 179.00  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 179.00  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 179.00  Click
Zr 3d5/2 ZrC0.92 179.05  Click
Zr 3d5/2 Zr 179.08  Click
Zr 3d5/2 Zr 179.08  Click
Zr 3d5/2 Zr/Si 179.10  Click
Zr 3d5/2 ZrCl 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr 179.20  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 179.20  Click
Zr 3d5/2 O2/Fe24Zr76 179.20  Click
Zr 3d5/2 ZrBr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr 179.30  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 179.30  Click
Zr 3d5/2 ZrBrH 179.40  Click
Zr 3d5/2 ZrClH 179.40  Click
Zr 3d5/2 Ni25Zr75Hx 179.40  Click
Zr 3d5/2 Ni64Zr36 179.40  Click
Zr 3d5/2 Ni64Zr36 179.40  Click
Zr 3d5/2 Zr1.02Si0.96Te1.02 179.40  Click
Zr 3d5/2 Fe91Zr9 179.48  Click
Zr 3d5/2 Ni91Zr9 179.50  Click
Zr 3d5/2 LaCu0.5Zr0.5Ox 179.50  Click
Zr 3d5/2 Fe90Zr10 179.51  Click
Zr 3d5/2 ZrC 179.60  Click
Zr 3d5/2 ZrHx 179.60  Click
Zr 3d5/2 ZrHx 179.60  Click
Zr 3d5/2 ZrBr 179.80  Click
Zr 3d5/2 ZrN0.68 179.90  Click
Zr 3d5/2 ZrN0.13 180.00  Click
Zr 3d5/2 LaCu0.7Zr0.3Ox 180.70  Click
Zr 3d5/2 ZrN 180.90  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 180.90  Click
Zr 3d5/2 O2/Fe24Zr76 180.90  Click
Zr 3d5/2 LaCu0.3Zr0.7Ox 180.90  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 181.30  Click
Zr 3d5/2 (((CH3)3Si)3C5H2)2ZrCl2 181.40  Click
Zr 3d5/2 Zr0.85Ti1.15O4 181.40  Click
Zr 3d5/2 LaZrOx 181.40  Click
Zr 3d5/2 ZrO2 181.50  Click
Zr 3d5/2 Zr1.09Ti0.91O4 181.50  Click
Zr 3d5/2 (((CH3)3Si)2C5H3)2ZrCl2 181.60  Click
Zr 3d5/2 BaZr0.5Ti0.5O3 181.60  Click
Zr 3d5/2 ((CH3)3SiC5H4)2ZrCl2 181.70  Click
Zr 3d5/2 Zr1.09Ti0.91O4 181.70  Click
Zr 3d5/2 Y0.16ZrOx 181.80  Click
Zr 3d5/2 Y0.16ZrOx 181.90  Click
Zr 3d5/2 Zr0.85Ti1.15O4 181.90  Click
Zr 3d5/2 ZrO2/NiO 181.90  Click
Zr 3d5/2 ((C5H5)2ZrCl)2O 181.90  Click
Zr 3d5/2 ZrO2 182.00  Click
Zr 3d5/2 Ni91Zr9 182.00  Click
Zr 3d5/2 Co50Zr50Ox 182.00  Click
Zr 3d5/2 ZrTiO4 182.00  Click
Zr 3d5/2 ZrTiO4 182.00  Click
Zr 3d5/2 ZrO2 182.10  Click
Zr 3d5/2 Zr[Al1.0O0.3(OH)0.8F1.0(H2O)0.7](C3H9N)1.3H0.3(PO4)2.2.3H2O 182.10  Click
Zr 3d5/2 Zr[Al2.0O0.6(OH)1.4F2.3(H2O)1.4](C3H9N)0.7H0.5PO4)2.2.0H2O 182.10  Click
Zr 3d5/2 Zr[Al3.4O1.1(OH)1.5F4.9(H2O)2.5](C3H9N)0.3H0.3PO4)2.2.9H2O 182.10  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.20  Click
Zr 3d5/2 ZrO2 182.30  Click
Zr 3d5/2 ZrO2 182.30  Click
Zr 3d5/2 ZrO2 182.30  Click
Zr 3d5/2 (Fe0.9V0.1)2Zr 182.30  Click
Zr 3d5/2 O2/V2Zr 182.30  Click
Zr 3d5/2 Zr[Cr2.53Fe5.61(CH3COO)1.17(OH)21.25](PO4)2.8.7H2O 182.30  Click
Zr 3d5/2 Zr[Cr1.32Fe5.58(CH3COO)0.64(OH)18.06](PO4)2.6.5H2O 182.30  Click
Zr 3d5/2 ZrO2 182.40  Click
Zr 3d5/2 (Y2O3)10(ZrO2)90 182.40  Click
Zr 3d5/2 ((ZrF4)53(BaF2)20(LaF3)4(AlF3)3(NaF)20)Ox 182.40  Click
Zr 3d5/2 Zr[Cr3.46Fe3.56(CH3COO)1.53(OH)17.53](PO4)2.11.2H2O 182.40  Click
Zr 3d5/2 Zr[Cr3.33Fe1.38(CH3COO)1.47(OH)10.61](PO4)2.6.9H2O 182.40  Click
Zr 3d5/2 Zr[Cr3.21Fe1.90(CH3COO)1.39(OH)11.94](PO4)2.5.2H2O 182.40  Click
Zr 3d5/2 Zr[Cr1.97Fe2.56(CH3COO)0.85(OH)10.74](PO4)2.3.9H2O 182.40  Click
Zr 3d5/2 Zr[Cr0.61Fe5.64(CH3COO)0.38(OH)16.37](PO4)2.4.9H2O 182.40  Click
Zr 3d5/2 Zr[Cr2.70Fe0.60(CH3COO)1.27(OH)6.63](PO4)2.6.4H2O 182.40  Click
Zr 3d5/2 ZrO2/Ni 182.45  Click
Zr 3d5/2 O2/AlNiZr 182.50  Click
Zr 3d5/2 (-Zr(OCH2CH2CH3)x(C4H9C(O)O)y(O-)z)n 182.50  Click
Zr 3d5/2 Zr0.332O0.639F0.021 182.50  Click
Zr 3d5/2 Zr[Cr3.53Fe1.10(CH3COO)1.47(OH)10.42](PO4)2.5.4H2O 182.50  Click
Zr 3d5/2 (Y2O3)6(ZrO2)94 182.50  Click
Zr 3d5/2 ZrO2 182.52  Click
Zr 3d5/2 AlNiZrOx 182.60  Click
Zr 3d5/2 ZrO2/Ni 182.60  Click
Zr 3d5/2 Zr(HPO4)2.H2O 182.70  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C10H8N2)0.25.1.5H2O 182.70  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C14H12N2)0.5.2.5H2O 182.70  Click
Zr 3d5/2 alpha-Zr(HPO4)2.H2O 182.70  Click
Zr 3d5/2 O2/Mn2Zr 182.70  Click
Zr 3d5/2 ZrH1.56[Co0.22(C12H8N2)0.5](PO4)2.3H2O 182.70  Click
Zr 3d5/2 Zr(HPO4)2.H2O 182.70  Click
Zr 3d5/2 Si0.057Zr0.269O0.597F0.078 182.70  Click
Zr 3d5/2 ZrO2/Zr 182.75  Click
Zr 3d5/2 (Zr(HPO4)2)2(C5H3NC2H2C5H3N) 182.80  Click
Zr 3d5/2 (Zr(HPO4)2)2(C5H3NC2H2C5H3N).2H2O 182.80  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C14H12N2)0.5 182.80  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C12H8N2)0.5 182.80  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C12H8N2)0.5.2H2O 182.80  Click
Zr 3d5/2 ZrO0.15H2.25Na0.08[(AlO2)2.63(SiO2)93.37] 182.80  Click
Zr 3d5/2 Zr0.339O0.555F0.106 182.80  Click
Zr 3d5/2 [Zr(OH)2(CH3CH(NH2)COO)2]Br2.3H2O 182.90  Click
Zr 3d5/2 ZrO2 182.90  Click
Zr 3d5/2 alpha-Zr(HPO4)2(C10H8N2)0.25 182.90  Click
Zr 3d5/2 Ni64Zr36 182.90  Click
Zr 3d5/2 CuZr2(PO4)3 182.90  Click
Zr 3d5/2 Zr(HPO4)2(C12H8N2)0.5.2H2O 182.90  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 182.90  Click
Zr 3d5/2 [Zr(OH)2(CH3CH(NH2)COO)2]Cl2.3H2O 183.00  Click
Zr 3d5/2 ZrO2 183.00  Click
Zr 3d5/2 ZrH[Cu0.5(C12H8N2)0.5](PO4)2.3H2O 183.00  Click
Zr 3d5/2 Zr(HPO4)2(C12H8N2)0.5.3H2O 183.00  Click
Zr 3d5/2 ZrOCl2 183.00  Click
Zr 3d5/2 ZrO2 183.10  Click
Zr 3d5/2 O2/Mn2Zr 183.10  Click
Zr 3d5/2 O2/Fe24Zr76 183.10  Click
Zr 3d5/2 ZrH[Cu(C12H8N2)]0.5(PO4)2.3H2O 183.10  Click
Zr 3d5/2 ZrHCu0.5(PO4)2.4H2O 183.10  Click
Zr 3d5/2 ZrH1.6[Cu(C12H8N2)2]0.2(PO4)2.3H2O 183.10  Click
Zr 3d5/2 Zr(HPO4)2.H2O 183.10  Click
Zr 3d5/2 ZrP2.3Cr4.4O23.7 183.10  Click
Zr 3d5/2 O2/(Fe0.9V0.1)2Zr 183.20  Click
Zr 3d5/2 ZrO2/Zr 183.20  Click
Zr 3d5/2 (ZrO2)91(Y2O3)9/Si 183.20  Click
Zr 3d5/2 ZrH1.40Rh0.20((CH3)2C12H8N4))0.40(PO4)2.2.5H2O 183.20  Click
Zr 3d5/2 ZrH1.46Rh0.18(C10H8N2)0.25(PO4)2.1.9H2O 183.20  Click
Zr 3d5/2 ZrRh0.66(PO4)2.4H2O 183.20  Click
Zr 3d5/2 ZrH1.46Rh0.18(C12H8N4)0.37(PO4)2.2H2O 183.20  Click
Zr 3d5/2 ZrO2 183.30  Click
Zr 3d5/2 ZrO2 183.30  Click
Zr 3d5/2 Zr98Sn1.5Fe0.22 183.30  Click
Zr 3d5/2 ZrP2.3Cr4.4O22.0 183.30  Click
Zr 3d5/2 ZrP2.3Cr3.2O15.2 183.30  Click
Zr 3d5/2 O2/Zr 183.40  Click
Zr 3d5/2 ZrSiO4 183.40  Click
Zr 3d5/2 Si0.255Zr0.061O0.675F0.008 183.40  Click
Zr 3d5/2 Zr(HPO4)O3PC6H4SO3H 183.50  Click
Zr 3d5/2 ZrP2.2Cr3.5O16.8 183.50  Click
Zr 3d5/2 Si0.251Zr0.074O0.651F0.025 183.50  Click
Zr 3d5/2 Si0.284Zr0.031O0.657F0.028 183.50  Click
Zr 3d5/2 Si0.255Zr0.072O0.665F0.008 183.50  Click
Zr 3d5/2 Zr(HPO4)2.2H2O 183.60  Click
Zr 3d5/2 Si0.284Zr0.042O0.656F0.017 183.60  Click
Zr 3d5/2 K3ZrF7 183.70  Click
Zr 3d5/2 O2/Zr 183.70  Click
Zr 3d5/2 ZrCl4 183.70  Click
Zr 3d5/2 Si0.294Zr0.029O0.670F0.006 183.70  Click
Zr 3d5/2 Si0.314Zr0.012O0.655F0.019 183.70  Click
Zr 3d5/2 Si0.316Zr0.013O0.664F0.008 183.80  Click
Zr 3d5/2 Si0.277Zr0.043O0.642F0.038 183.80  Click
Zr 3d5/2 Si0.322Zr0.005O0.655F0.019 183.90  Click
Zr 3d5/2 Si0.328Zr0.001O0.665F0.007 183.90  Click
Zr 3d5/2 ZrO2 184.00  Click
Zr 3d5/2 Zr(HPO4)2.H2O 184.00  Click
Zr 3d5/2 Zr(HPO4)2.H2O 184.00  Click
Zr 3d5/2 Zr(SO4)2 184.00  Click
Zr 3d5/2 Si0.300Zr0.028O0.640F0.032 184.00  Click
Zr 3d5/2 K2ZrF6 184.20  Click
Zr 3d5/2 (AlF3)4(BaF2)24(LaF3)4(NaF)15(ZrF4)53 184.60  Click
Zr 3d5/2 KZrF5.H2O 184.70  Click
Zr 3d5/2 ((ZrF4)53(BaF2)20(LaF3)4(AlF3)3(NaF)20)Ox 184.90  Click
Zr 3d5/2 ZrP/C 185.00  Click
Zr 3d5/2 ZrF4 185.10  Click
Zr 3d5/2 ZrF4 185.30  Click
Zr 3d5/2 ZrF4 185.30  Click
Zr 3d5/2 ZrF4 185.60  Click
Zr 3d5/2 ZrF4 185.60  Click
Zr 3d5/2 Zr(O3PC10H20PO3)/Si 186.00  Click

 Periodic Table 


 

 

Statistical Analysis of Binding Energies in NIST XPS Database of BEs

 

 

 Periodic Table 


 

Advanced XPS Information Section

 

Expert Knowledge, Spectra, Features, Guidance and Cautions
for XPS Research Studies
on Zirconium Materials

 

 


 

Expert Knowledge Explanations

 

 Periodic Table 


 

 

Zirconium Chemical Compounds


Peak-fits and Overlays of Chemical State Spectra

Pure Zirconium:  Zr (3d)
Cu (2p3/2) BE = 932.6 eV
ZrO2:  Zr (3d)
C (1s) BE = 285.0 eV
ZrF4:  Zr (3d)
C (1s) BE = 285.0 eV

Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Overlay of Zr (3d5/2) Spectra shown Above

C (1s) BE = 285.0 eV

 

Chemical Shift between Zr and ZrO2:  3.5 eV
 Chemical Shift between Zr and ZrF2:  7.2 eV

 

 Periodic Table 


 

Zirconium Oxide, ZrO2
pressed powder

Survey Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV
Zr (3d) Chemical State Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV

 
O (1s) Chemical State Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV
C (1s) Chemical State Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV

 
Zr (3d) Extended Chemical State Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV
O (1s) Extended Chemical State Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV


  .
Zr (3d) for ZrO2 – vertically expanded O (1s) for ZrO2 – vertically expanded

   .
Valence Band Spectrum from ZrO2
Flood gun is ON, C (1s) BE = 285.0 eV
 


Shake-up Features for:
ZrO2

na na

 


 

Multiplet Splitting Features for:
Zirconium Compounds

Zr metal – NO Splitting for Zr (3s) ZrO2  – Multiplet Splitting Peaks for Zr (3s)
na na

 

 Periodic Table 

 


 

 

Zirconium Chemical Compounds

 

Zirconium Fluoride, ZrF4

Survey Spectrum Zr (3d) Spectrum


.
F (1s) Spectrum C (1s) Spectrum


.
Valence Band Spectrum

 Periodic Table 



 

Quantitation Details and Information

 

Quantitation by XPS is often incorrectly done, in many laboratories, by integrating only the main peak, ignoring the Electron Loss peak, and the satellites that appear as much as 30 eV above the main peak.  By ignoring the electron loss peak and the satellites, the accuracy of the atom% quantitation is in error.

When using theoretically calculated Scofield cross-section values, the data must be corrected for the transmission function effect, use the calculated TPP-2M IMFP values, the pass energy effect on the transmission function, and the peak area used for calculation must include the electron loss peak area, shake-up peak area, multiplet-splitting peak area, and satellites that occur within 30 eV of the main peak.

 

Quantitation from Pure, Homogeneous Binary Compound
composed of Zirconium – ZrO2

 

This section is focused on measuring and reporting the atom % quantitation that results by using:

  • Scofield cross-sections,
  • Spectra corrected to be free from Transmission Function effects
  • A Pass Energy that does not saturate the detector system in the low KE range (BE = 1000-1400 eV)
  • A focused beam of X-ray smaller than the field of view of the lens
  • An angle between the lens and the source that is ~55 deg that negates the effects of beta-asymmetry
  • TPP-2M inelastic mean free path values, and
  • Either a linear background or an iterated Shirley (Sherwood-Proctor) background to define peak areas

The results show here are examples of a method being developed that is expected to improve the “accuracy” or “reliability” of the atom % values produced by XPS.

 

 Periodic Table 

 


 

 

Flood Gun Effect on Native Oxide of Zirconium

 

Native Oxide of Zirconium Sheet – Sample GROUNDED


 

Native Oxide of Zirconium Sheet – Sample Grounded

Electron Flood Gun:  0 Voltage (FG OFF), Min Voltage versus Max Voltage

Zr (3d) O (1s) C (1s)
 Periodic Table 

 

 

XPS Study of UHV Gas Captured by:
Freshly Ion Etched Zirconium
Reveals Chemical Shifts and Chemical States that Develop from Highly Reactive Pure Zro

Surface was strongly Ar+ ion etched to remove all contaminants, and
then allowed to react overnight with the UHV Gases – CO, H2, H2O, O2 & CH4
that normally reside inside on the walls of the chamber, on the sample stage,
and on the nearby un-etched surface a total of 10-14 hours.  UHV pump was a Cryopump.
Initial spectra are at the front.  Final spectra are at the rear. Flood gun is OFF.
Zr (3d) Signal
 O (1s) Signal C (1s) Signal
Copyright ©:  The XPS Library

 

AES Survey Spectrum from ZrO2 using:
Charge Control


Features Observed

  • xx
  • xx
  • xx

 Periodic Table 


 

Zirconium Alloys

   
XxCu XxCu
 Periodic Table   
XxCu XxCu

 

Copyright ©:  The XPS Library 

 



 

XPS Facts, Guidance & Information

 Periodic Table 

    Element Zirconium (Zr)
 
    Primary XPS peak used for Peak-fitting: Zr (3d5/2)  
    Spin-Orbit (S-O) splitting for Primary Peak: Spin-Orbit splitting for “d” orbital, ΔBE = 2.4 eV
 
    Binding Energy (BE) of Primary XPS Signal: 178.8 eV
 
    Scofield Cross-Section (σ) Value: Zr (3d5/2) = 4.17     Zr (3d3/2) = 2.87
 
    Conductivity: Zr resistivity =  
Native Oxide suffers Differential Charing
 
    Range of Zr (3d5/2) Chemical State BEs: 179 eV – 187 range   (Zro to ZrF2)  
Signals from other elements that overlap
Zr (3d5/2) Primary Peak:
  xx (xx)
Bulk Plasmons:   ~xx eV above peak max for pure
Shake-up Peaks: xx
Multiplet Splitting Peaks:   xx

 

 

General Information about
XXX Compounds:
  xx  
Cautions – Chemical Poison Warning

xx 

Copyright ©:  The XPS Library 

 Periodic Table 



 

Information Useful for Peak-fitting Zr (3d5/2)

 

  • FWHM (eV) of Zr (3d5/2) for Pure Zro ~0.63eV using 50 eV Pass Energy after ion etching:
  • FWHM (eV) of Zr (3d5/2) for ZrO2 ~1.2 eV using 50 eV Pass Energy  (before ion etching)
  • Binding Energy (BE) of Primary Signal used for Measuring Chemical State Spectra:  179.8 eV for Zr (3d5/2) with +/- 0.2 uncertainty
  • List of XPS Peaks that can Overlap Peak-fit results for Zr (3d5/2):  

 Periodic Table 


 

General Guidelines for Peak-fitting XPS Signals

 

  • Typical Energy Resolution for Pass Energy (PE) setting used to measure Chemical State Spectra on Various XPS Instruments
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 50 on Thermo K-Alpha
    • Ag (3d5/2) FWHM (eV) = ~1.00 eV for PE 80 on Kratos Nova
    • Ag (3d5/2) FWHM (eV) = ~0.95 eV for PE 45 on PHI VersaProbe
  • FWHM (eV) of Pure Elements: Ranges from 0.4 to 1.0 eV across the periodic table
  • FWHM of Chemical State Peaks in any Chemical Compound:  Ranges from 1.1 to 1.6 eV  (in rare cases FWHM can be 1.8 to 2.0 eV)
  • FWHM of Pure Element versus FWHM of Oxide:  Pure element FWHM << Oxide FWHM  (e.g. 0.8 vs 1.5 eV, roughly 2x)
  • If FWHM Greater than 1.6 eV:  When a peak FWHM is larger than 1.6 eV, it is best to add another peak to the peak-fit envelop.
  • BE (eV) Difference in Chemical States: The difference in chemical state BEs is typically 1.0-1.3 eV apart.  In rare cases, <0.8 eV.
  • Number of Peaks to Use:  Use minimum. Do not use peaks with FWHM < 1.0 eV unless it is a or a conductive compound.
  • Typical Peak-Shape:  80% G: 20% L,   or Voigt : 1.4 eV Gaussian and 0.5 eV Lorentzian
  • Spin-Orbit Splitting of Two Peaks (due to Coupling):  The ratio of the two (2) peak areas must be constrained.

Notes:

  • Other Oxidation States can appear as small peaks when peak-fitting
  • Pure element signals normally have asymmetric tails that should be included in the peak-fit.
  • Gaseous state materials often display asymmetric tails due to vibrational broadening.
  • Peak-fits of C (1s) in polymers include an asymmetric tail when the energy resolution is very high.
  • Binding energy shifts of some compounds are negative due to unusual electron polarization.

 Periodic Table 


 

Contaminants Specific to Zirconium

 

  • Zirconium develops a thick native oxide due to the reactive nature of clean Zirconium .
  • The native oxide of ZrOx is 8-9 nm thick.
  • Zirconium thin films often have a low level of iron (Fe) in the bulk as a contaminant or to strengthen the thin film
  • Zirconium forms a low level of carbide when the surface is ion etched inside the analysis chamber

 

Commonplace Contaminants

 

  • Carbon and Oxygen are common contaminants that appear on nearly all surfaces. The amount of Carbon usually depends on handling.
  • Carbon is usually the major contaminant.  The amount of carbon ranges from 5-50 atom%.
  • Carbon contamination is attributed to air-borne organic gases that become trapped by the surface, oils transferred to the surface from packaging containers, static electricity, or handling of the product in the production environment.
  • Carbon contamination is normally a mixture of different chemical states of carbon (hydrocarbon, alcohol or ether, and ester or acid).
  • Hydrocarbon is the dominant form of carbon contamination. It is normally 2-4x larger than the other chemical states of carbon.
  • Carbonate peaks, if they appear, normally appear ~4.5 eV above the hydrocarbon C (1s) peak max BE.
  • Low levels of carbonate is common on many s that readily oxidize in the air.
  • High levels of carbonate appear on reactive oxides and various hydroxides.  This is due to reaction between the oxide and CO2 in the air.
  • Hydroxide contamination peak is due to the reaction with residual water in the lab air or the vacuum.
  • The O (1s) BE of the hydroxide (water) contamination normally appears 0.5 to 1.0 eV above the oxide peak
  • Sodium (Na), Potassium (K), Sulfur (S) and Chlorine (Cl) are common trace to low level contaminants
  • To find low level contaminants it is very useful to vertically expand the 0-600 eV region of the survey spectrum by 5-10X
  • A tiny peak that has 3 or more adjacent data-points above the average noise of the background is considerate to be a real peak
  • Carbides can appear after ion etching various reactive s.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 Periodic Table 


 

Data Collection Guidance

 

  • Chemical state differentiation can be difficult
  • Collect principal Zr (3d5/2) peak.
  • Long time exposures (high dose) to X-rays can degrade various polymers, catalysts, high oxidation state compounds
  • During XPS analysis, water or solvents can be lost due to high vacuum or irradiation with X-rays or Electron flood gun
  • Auger signals can sometimes be used to discern chemical state shifts when XPS shifts are very small

 Periodic Table 


 

Data Collection Settings for Zirconium (Zr)

 

  • Conductivity:  Zirconium readily develops a native oxide that is sensitive to Flood Gun – Differential Charging Possible – float sample recommended
  • Primary Peak (XPS Signal) used to measure Chemical State Spectra:  Zr (3d5/2) at 179 eV
  • Recommended Pass Energy for Measuring Chemical State Spectrum:  40-50 eV    (Produces Ag (3d5/2) FWHM ~0.7 eV)
  • Recommended # of Scans for Measuring Chemical State Spectrum:  4-5 scans normally   (Use 10-25 scans to improve S/N)
  • Dwell Time:  50 msec/point
  • Step Size:  0.1 eV/point   (0.1 eV/step or 0.1 eV/channel)
  • Standard BE Range for Measuring Chemical State Spectrum:  165 – 185 eV
  • Recommended Extended BE Range for Measuring Chemical State Spectrum:  160-260 eV
  • Recommended BE Range for Survey Spectrum:  -10 to 1,100 eV   (above 1,100 eV there are no useful XPS signals, except for Ge and Ga)
  • Typical Time for Survey Spectrum:  3-5 minutes for newer instruments, 5-10 minutes for older instruments
  • Typical Time for a single Chemical State Spectrum with high S/N:  5-10 minutes for newer instruments, 10-15 minutes for older instruments 

 Periodic Table 


 

Effects of Argon Ion Etching

 

  • Carbides appear after ion etching Zr and various reactive surfaces.  Carbides form due to the residual CO and CH4 in the vacuum.
  • Ion etching can produce low oxidation states of the material being analyzed.  These are newly formed contaminants.
  • Ion etching polymers by using standard Ar+ ion guns will destroy the polymer, converting it into a graphitic type of carbon

 

 Periodic Table 

Copyright ©:  The XPS Library 


Gas Phase XPS or UPS Spectra


 

Chemical State Spectra from Literature
xxx



End of File